K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Hỏi đáp ToánHỏi đáp Toán

9 tháng 5 2019

Ta có:a2+b2+c2\(\ge\)-ab-bc-ac

Thật vậy:

a2+b2\(\ge\)-2ab

b2+c2\(\ge\)-2bc

a2+c2\(\ge\)-2ac

Cộng vế theo vế, ta được:2(a2+b2+c2)\(\ge\)-2ab-2ac-2bc=>a2+b2+c2\(\ge\)-ab-bc-ac

M=a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)\(\ge\)2(a+b+c)

Lại có:2(a+b+c)\(\ge\)-a2-b2-c2-3

Suy ra:M\(\ge\)-a2-b2-c2-3=-4

Vậy GTNN của M=-4

9 tháng 5 2019

L​ê Hồ Trọng Tín ​  \(2\left(a+b+c\right)\ge-a^2-b^2-c^2-3\) Đẳng thức xảy ra khi a=b=c=-1 thay vào M không ra -4 nha, bài làm sai rồi

25 tháng 10 2016

GTNN = -10

cách làm

M = ...

= 2(a2+b2)+a2+b2+c2

= 2(a2+b2)+(a+b+c)2-2(ab+bc+ac) (1)

mà ab+bc+ac=5

=> (1) = 2(a2+b2)+(a+b+c)2-10

có a2 và b2 \(\ge\) 0

2 >0

(a+b+c)2 \(\ge\) 0

=> (1) \(\ge\) -10

=> M min = -10

hơi sơ sài nhỉ, ko hiểu thì hỏi, tôi chỉ cho

25 tháng 10 2016

mình cảm ơn nha

 

17 tháng 12 2016

1/ \(a+b+c=11\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)

\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)

2/ \(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)

3/ \(x^4+3x^3y+3xy^3+y^4\)

\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)

\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)

18 tháng 12 2016

bạn alibaba nguyễn có thể làm lại giúp mình được không ?

27 tháng 8 2016

a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1

\(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)

⇒a\(^3\)+ b\(^3\)+ c\(^3\)\(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1

Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)

Vậy S = 0 + 0 + 1 = 1

27 tháng 8 2016

giup minh nha cac ban