K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

\(\left(a-b\right)^2=a^2-2ab+b^2\ge0 \)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow A\ge2\)

8 tháng 1 2016

15 hay -15?Tiet Nhan QuyNguyễn Trung Sơn

9 tháng 1 2016

 a=15


 

10 tháng 12 2019

1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu 1 tại link này.

10 tháng 12 2019

Em cảm ơn cô nhiều

17 tháng 7 2019

\(A=16-2x-x^2\)

\(A=-x^2-2.x.1-1+17\)

\(A=-\left(x^2+2.x.1+1\right)+17\)

\(A=-\left(x+1\right)^2+17\le17\)

Dấu = xảy ra khi : 

   \(x+1=0\Leftrightarrow x=-1\)

Vậy A max = 17 tại x = -1

17 tháng 7 2019

A=-(x^2+2x-16)

=-(x^2+2x+1-17)

=-(x+1)^2+17

vs mọi x, cs:

-(x+1)^2 > 0

=>-(x+1)^2+17 > 17

=> A > 7

dấu = xảy ra <=> (x+1)^2=0

                     <=>x+1=0<=>x=-1

vậy GTLN A=17 đạt đc khi x=-1

5 tháng 11 2018

rút gọn hả bn

5 tháng 11 2018

Rút gọn: \(A=\left(a^2+a-1\right)\left(a^2-a+1\right)\)

\(=a^2a^2-a^2a+a^2+aa^2-aa+a-a^2+a-1\)

\(=a^4-a^3+a^2+a^3-a^2+a-a^2+a-1\)

\(=a^4-a^2+2a-1\)

Vậy \(A=a^4-a^2+2a-1\)

10 tháng 7 2018

\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)

\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

11 tháng 8 2019

1) A=\(-2\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+8\)

\(=-2\left(x-1\right)^2-\left(y-1\right)^2+8\)

Vì \(\hept{\begin{cases}-2\left(x-1\right)^2\le0;\forall x\\-\left(y-1\right)^2\le0;\forall y\end{cases}}\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2\le0;\forall x,y\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2+8\le0+8;\forall x,y\)

Hay \(A\le8;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-2\left(x-1\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy MAX A=8 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Phần kia tương tự

11 tháng 8 2019

1> A = -2x2 - y2 -2xy + 4x + 2y + 5

= -(x2 + y2 + 2xy - 2x - 2y + 1)-(x2 - 2x + 1)+7

= -(x + y - 1)2 - (x-1)2 + 7

Ta thấy: \(-\left(x+y-1\right)^2\le0;-\left(x-1\right)^2\le0\)

Nên A \(\le\)7. Dấu "=" xảy ra <=> x = 1 , y = 0

2> Ghép từng cặp x vs x; y vs y ; z vs z