Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)
Áp dụng bất đẳng thức AM - GM ta có :
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)
\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)
\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)
Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)
Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)