Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c là 3 cạnh tam giác nên a,b,c là 3 số dương
À mà bạn biết tính chất này chứ a/(a+b+c)<a/(b+c) (Cộng vào mẫu a dương nên nhỏ hơn)
a/(b+c)<(a+a)/(a+b+c)=2a/(a+b+c) (Cộng cả tử với mẫu với a)
=> Ta có: a/(a+b+c)<a/(b+c)<2a/(a+b+c) (1)
Tương tự với b: b/(a+b+c)<b/(a+c)<2b/(a+b+c) (2)
Tương tự với c: c/(a+b+c)<c/(a+b)<2c/(a+b+c) (3)
Cộng (1) với (2) và (3) ta được đpcm
1< a/(b+c) + b/(a+c) + c/(a+b) <2
bạn chỉ cần làm tương tự thôi
\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)
Vì a-b+c >0
a+b-c>0
b+c-a> 0
a+b+c>0
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm
Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)
\(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)
\(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)
\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )
\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)
\(\Rightarrow A>3+1+1+1\)
\(\Rightarrow A>6\left(đpcm\right)\)