K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)

\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)

Vì a-b+c >0

 a+b-c>0

b+c-a> 0

a+b+c>0

18 tháng 3 2019

Ta sẽ chứng minh c là cạnh nhỏ nhất.

Thật vậy,giả sử c không phải là cạnh nhỏ nhất.

Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)

Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)

Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.

Do đó c là cạnh nhỏ nhất.Khi đó:

\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)

Không chắc nha!Sai đừng trách.

18 tháng 3 2019

Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)

Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)

Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a

Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất

=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)

=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)

Vậy \(\widehat{C}< 60^o\)(đpcm)

8 tháng 4 2019

Vì a,b,c là 3 cạnh của 1 tam giác 

\(\Rightarrow\)\(a+b>c\)( bất đẳng thức tam giác)

\(\Rightarrow\)\(ac+bc>c^2\)( nhân 2 vế với c )

Tương tự ta có :

\(ba+ca>a^2\)

\(cb+ab>b^2\)

Công 2 vế lại ta có : \(ac+bc+ba+ca+cb+ab>a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

8 tháng 4 2019

áp dụng bất đẳng thức tam giác 

=>a+b>=c

b+c>=a

a+c>=b

=>c^2<=ac+bc

a^2<=ab+ac

b^2<=ab+bc

=>a^2+b^2+c^2<+2*(ab+bc+ac)

=>đfcm

29 tháng 7 2017

CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học