K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.

ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.

ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.

do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.

1 tháng 6 2020

Ta có: \(a^5-a=a\left(a^2+1\right)\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\left(a-1\right)\left(a+1\right)⋮5\)( 5 số nguyên liên tiếp chia hết cho 5)

=> \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)

( 3 số nguyên liên tiếp chia hết cho 2 và chia hết cho 3 nên chia hết cho 6) 

mà 6 .5 = 30 ; ( 6;5) = 1 

=> \(a^5-a⋮30\)

=> \(a^{2020}-a^{2016}=a^{2015}\left(a^5-a\right)⋮30\)

=> \(A=\left(a^{2020}-a^{2016}\right)+\left(b^{2020}-b^{2016}\right)+\left(c^{2020}-c^{2016}\right)⋮30\)

NV
15 tháng 3 2020

\(A=a^{2016}\left(a^4-1\right)+b^{2016}\left(b^4-1\right)+c^{2016}\left(c^4-1\right)\)

Xét: \(a^{2016}\left(a^4-1\right)=a^{2015}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)

Đặt \(B=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)

Do \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên dương liên tiếp nên chia hết cho 6 \(\Rightarrow B⋮6\)

Mặt khác:

\(B=\left(a-1\right)a\left(a+1\right)\left[a^2-4+5\right]\)

\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Do \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5

\(\Rightarrow B⋮5\Rightarrow B⋮30\) (do 5 và 6 nguyên tố cùng nhau)

Hoàn toàn tương tự ta có \(b^{2016}\left(b^4-1\right)⋮30\)\(c^{2016}\left(c^4-1\right)⋮30\)

\(\Rightarrow A⋮30\)

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

7 tháng 11 2017

ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)

                                                                     \(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)

mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> \(a\left(a-1\right)\left(a+1\right)⋮6\)

tương tự :  \(b\left(b-1\right)\left(b+1\right)⋮6\)

    \(c\left(c-1\right)\left(c+1\right)⋮6\)

=> (*) chia hếtcho 6

\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6

mà theo bài ra ta có: \(a+b+c⋮6\)

nên  \(a^3+b^3+c^3⋮6\) => đpcm

18 tháng 9 2016

bai nay chi can tach ra thanh mot nhom chia het cho 5 roi suy ra mot nhom chia het cho 5 roi minh phan h a^4-b^4 thanh nhan tu 

9 tháng 9 2018

k mk đi 

ai k mk

mk k lại

thanks