\(\left(a^{2020}+b^{2020}+c^{2020}\right)-\left(a^{2016}+b^{2016}+c^{2016}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2020

\(A=a^{2016}\left(a^4-1\right)+b^{2016}\left(b^4-1\right)+c^{2016}\left(c^4-1\right)\)

Xét: \(a^{2016}\left(a^4-1\right)=a^{2015}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)

Đặt \(B=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)

Do \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên dương liên tiếp nên chia hết cho 6 \(\Rightarrow B⋮6\)

Mặt khác:

\(B=\left(a-1\right)a\left(a+1\right)\left[a^2-4+5\right]\)

\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Do \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5

\(\Rightarrow B⋮5\Rightarrow B⋮30\) (do 5 và 6 nguyên tố cùng nhau)

Hoàn toàn tương tự ta có \(b^{2016}\left(b^4-1\right)⋮30\)\(c^{2016}\left(c^4-1\right)⋮30\)

\(\Rightarrow A⋮30\)

1 tháng 6 2020

Ta có: \(a^5-a=a\left(a^2+1\right)\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\left(a-1\right)\left(a+1\right)⋮5\)( 5 số nguyên liên tiếp chia hết cho 5)

=> \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)

( 3 số nguyên liên tiếp chia hết cho 2 và chia hết cho 3 nên chia hết cho 6) 

mà 6 .5 = 30 ; ( 6;5) = 1 

=> \(a^5-a⋮30\)

=> \(a^{2020}-a^{2016}=a^{2015}\left(a^5-a\right)⋮30\)

=> \(A=\left(a^{2020}-a^{2016}\right)+\left(b^{2020}-b^{2016}\right)+\left(c^{2020}-c^{2016}\right)⋮30\)

19 tháng 11 2019

What grade are you?

19 tháng 11 2019

Sai rồi còn bày đặt Tiếng Anh .Lần sau không biết thì im đi không lại bị người ta nói cho 

What grade are you in ? Okay

15 tháng 6 2018

Xét \(a,b>1\)

\(\Rightarrow a^{2020}+b^{2020}>a^{2018}+b^{2018}\)(loại)

Xét \(0< a,b< 1\)

\(\Rightarrow a^{2020}+b^{2020}< a^{2018}+b^{2018}\)

Xét \(a=1\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)

Xét \(a=0\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)

\(\Rightarrow\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)

Thế từng bộ vô cái nào lớn nhất lụm

9 tháng 6 2017

ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.

ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.

ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.

do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.

4 tháng 2 2017

\(\hept{\begin{cases}a+b+c=6\left(1\right)\\a^2+b^2+c^2=12\left(2\right)\end{cases}}\)

(1) bình phuong trừ (2)=>ab+bc+ac=12

\(a^2+b^2+c^2\ge ab+bc+ac\)đẳng thức chỉ xẩy ra khi a=b=c

Từ (1)=> a=b=c=2

=> P=3 

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6