K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

_Bác ghi rõ được hem ạ=)))Nhìn rối mắt=))))

27 tháng 4 2016

T^a có BĐT sau:

\(a^3+b^3\ge ab\left(a+b\right)\)

BĐT trên có thể dễ dàng chứng minh bằng biến đổi tương đương.

Áp dụng vào, ta có ngay đpcm.

19 tháng 3 2016

Đặt  \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

Với mọi  \(a,b,c>0\)  thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:

 \(a^3+b^3\ge a^2b+ab^2;\)  \(b^3+c^3\ge b^2c+bc^2\)  và  \(b^3+c^3\ge b^2c+bc^2\)

Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức  \(A\)  sẽ trở thành:

\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)

Xảy ra đẳng thức trên khi và chỉ khi  \(a=b=c\)

30 tháng 6 2016

hằng đẳng thức thứ nhất sai rồi bạn , phải là 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

30 tháng 6 2016

15 tháng 9 2020

C = ( a + b - c )2 - ( a - c )2 - 2ab + 2bc

= [ ( a + b ) - c ]2 - ( a2 - 2ac + c2 ) - 2ab + 2bc

= ( a + b )2 - 2( a + b )c + c2 - a2 + 2ac - c2 - 2ab + 2bc

= a2 + b2 + 2ab - 2bc - 2ac - a2 + 2ac - 2ab + 2bc

= b2

D = ( a + b + 1 )3 - ( a + b - 1 )3 - 6( a + b )2

= [ ( a + b ) + 1 ]3 - [ ( a + b ) - 1 ]3 - 6( a2 + 2ab + b2 )

= [ ( a + b )3 + 3( a + b )2.1 + 3( a + b ).12 + 13 ] - [ ( a + b )3 - 3( a + b )2.1 + 3( a + b ).12 - 13 ] - 6a2 - 12ab - 6b2

= [ ( a3 + 3a2b + 3ab2 + b3 ) + 3( a2 + 2ab + b2 ) + 3a + 3b + 1 ]  - [ ( a3 + 3a2b + 3ab2 + b3 ) - 3( a2 + 2ab + b2 ) + 3a + 3b - 1 ] - 6a2 - 12ab - 6b2

= ( a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 ) - ( a3 + 3a2b + 3ab2 + b3 - 3a2 - 6ab - 3b2 + 3a + 3b - 1 ) - 6a2 - 12ab - 6b2

= a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 - a3 - 3a2b - 3ab2 - b3 + 3a2 + 6ab + 3b2 - 3a - 3b + 1 - 6a2 - 12ab - 6b2

= 2

< D hơi dài nên có thể có sai sót >

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)

=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc  - c^2)

=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]

=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2

Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10

Thay a - b = 7 ; b – c = 3; a - c  = 10 vào P, ta được:

P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)

= 1/2.(49 + 9 + 100)/(49 – 9)

= 1/2.158/40

= 158/80

= 79/40

# Chúc bạn học tốt!

13 tháng 12 2020

\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)

\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)

\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)

bạn ktra lại đề :)

26 tháng 8 2020

Bài làm:

Ta có: \(\left(a-b-c\right)^2\)

\(=\left[a-\left(b+c\right)\right]^2\)

\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)

\(=a^2-2ab-2ac+b^2+2bc+c^2\)

\(=a^2+b^2+c^2-2ab+2bc-2ac\)

26 tháng 8 2020

( a - b - c )2

= [ ( a - b ) - c ]2

= ( a - b )2 - 2( a - b )c + c2

= a2 - 2ab + b2 - 2ac + 2bc + c2

= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )

18 tháng 7 2019

a)= \(a^2+b^2+c^2-2ab-2bc+2ac-\left(b^2-2bc+c^2\right)-2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2-2ab-2ac\)

=\(a^2-4ab\)

18 tháng 7 2019

b) = \(a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2\)\(+2ab-2bc-2ac-2\left(b^2-2bc+c^2\right)\)

=\(2a^2+2b^2+2c^2-4bc-2b^2+4bc-2c^2\)

=\(2a^2\)

11 tháng 6 2015

\(\left(a+b+c\right)^2=a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)\)

\(=a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc\)

11 tháng 6 2015

Đặt A = a + b

  Biến đổi vế trái ta có

:\(\left(A+c\right)^2=A^2+2Ac+c^2\)=\(\left(a+b\right)^2+2\left(a+b\right)c+c^2=a^2+b^2+2ab+2ac+2bc+c^2\)

Vậy vế trái bằng vế phải đẳng thức được chứng minh