Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
Với mọi \(a,b,c>0\) thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:
\(a^3+b^3\ge a^2b+ab^2;\) \(b^3+c^3\ge b^2c+bc^2\) và \(b^3+c^3\ge b^2c+bc^2\)
Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức \(A\) sẽ trở thành:
\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)
Xảy ra đẳng thức trên khi và chỉ khi \(a=b=c\)
hằng đẳng thức thứ nhất sai rồi bạn , phải là
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
C = ( a + b - c )2 - ( a - c )2 - 2ab + 2bc
= [ ( a + b ) - c ]2 - ( a2 - 2ac + c2 ) - 2ab + 2bc
= ( a + b )2 - 2( a + b )c + c2 - a2 + 2ac - c2 - 2ab + 2bc
= a2 + b2 + 2ab - 2bc - 2ac - a2 + 2ac - 2ab + 2bc
= b2
D = ( a + b + 1 )3 - ( a + b - 1 )3 - 6( a + b )2
= [ ( a + b ) + 1 ]3 - [ ( a + b ) - 1 ]3 - 6( a2 + 2ab + b2 )
= [ ( a + b )3 + 3( a + b )2.1 + 3( a + b ).12 + 13 ] - [ ( a + b )3 - 3( a + b )2.1 + 3( a + b ).12 - 13 ] - 6a2 - 12ab - 6b2
= [ ( a3 + 3a2b + 3ab2 + b3 ) + 3( a2 + 2ab + b2 ) + 3a + 3b + 1 ] - [ ( a3 + 3a2b + 3ab2 + b3 ) - 3( a2 + 2ab + b2 ) + 3a + 3b - 1 ] - 6a2 - 12ab - 6b2
= ( a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 ) - ( a3 + 3a2b + 3ab2 + b3 - 3a2 - 6ab - 3b2 + 3a + 3b - 1 ) - 6a2 - 12ab - 6b2
= a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 - a3 - 3a2b - 3ab2 - b3 + 3a2 + 6ab + 3b2 - 3a - 3b + 1 - 6a2 - 12ab - 6b2
= 2
< D hơi dài nên có thể có sai sót >
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)
=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc - c^2)
=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]
=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2
Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10
Thay a - b = 7 ; b – c = 3; a - c = 10 vào P, ta được:
P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)
= 1/2.(49 + 9 + 100)/(49 – 9)
= 1/2.158/40
= 158/80
= 79/40
# Chúc bạn học tốt!
\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)
\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)
\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)
bạn ktra lại đề :)
Bài làm:
Ta có: \(\left(a-b-c\right)^2\)
\(=\left[a-\left(b+c\right)\right]^2\)
\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)
\(=a^2-2ab-2ac+b^2+2bc+c^2\)
\(=a^2+b^2+c^2-2ab+2bc-2ac\)
( a - b - c )2
= [ ( a - b ) - c ]2
= ( a - b )2 - 2( a - b )c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2
= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )
a)= \(a^2+b^2+c^2-2ab-2bc+2ac-\left(b^2-2bc+c^2\right)-2ab-2ac\)
=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2-2ab-2ac\)
=\(a^2-4ab\)
\(\left(a+b+c\right)^2=a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)\)
\(=a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc\)
Đặt A = a + b
Biến đổi vế trái ta có
:\(\left(A+c\right)^2=A^2+2Ac+c^2\)=\(\left(a+b\right)^2+2\left(a+b\right)c+c^2=a^2+b^2+2ab+2ac+2bc+c^2\)
Vậy vế trái bằng vế phải đẳng thức được chứng minh
_Bác ghi rõ được hem ạ=)))Nhìn rối mắt=))))
T^a có BĐT sau:
\(a^3+b^3\ge ab\left(a+b\right)\)
BĐT trên có thể dễ dàng chứng minh bằng biến đổi tương đương.
Áp dụng vào, ta có ngay đpcm.