Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hằng đẳng thức thứ nhất sai rồi bạn , phải là
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\Rightarrow a,b,c\le1\Leftrightarrow a-1,b-1,c-1\le0\)
\(a^3+b^3+c^3-a^2-b^2-c^2=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Suy ra \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
mà \(a^2+b^2+c^2=1\)do đó trong ba số \(a,b,c\)có hai số bằng \(1\), một số bằng \(0\).
Khi đó \(a^{2022}+b^{2023}+c^{2024}=1+0+0=1\).
Áp dụng BĐT \(4x^3+4y^3\ge\left(x+y\right)^3\),ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\);\(4b^3+4c^3\ge\left(b+c\right)^3\);\(4a^3+4c^3\ge\left(a+c\right)^3\)
\(\Rightarrow8a^3+8b^3+8c^3\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)
\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)
Đặt \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
Với mọi \(a,b,c>0\) thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:
\(a^3+b^3\ge a^2b+ab^2;\) \(b^3+c^3\ge b^2c+bc^2\) và \(b^3+c^3\ge b^2c+bc^2\)
Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức \(A\) sẽ trở thành:
\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)
Xảy ra đẳng thức trên khi và chỉ khi \(a=b=c\)