K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)

=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc  - c^2)

=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]

=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2

Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10

Thay a - b = 7 ; b – c = 3; a - c  = 10 vào P, ta được:

P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)

= 1/2.(49 + 9 + 100)/(49 – 9)

= 1/2.158/40

= 158/80

= 79/40

# Chúc bạn học tốt!

13 tháng 12 2020

\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)

\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)

\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)

bạn ktra lại đề :)

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)

\(\Rightarrow bc+ca+ab=0\)

\(\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ca=-bc-ab\\ab=-bc-ca\end{cases}}\)

\(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ba}\)

\(A=\frac{a^2}{a^2+bc-ac-ab}+\frac{b^2}{b^2+ca-bc-ab}+\frac{c^2}{c^2+ab-bc-ca}\)

\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

2 tháng 1 2018

Mình tiếp tục nhé

\(A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)=\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Vậy A = 1

29 tháng 8 2018

Nhân ra được a2+b2+c2=2ab+2ac+2bc

=>(a+b+c)^2=4ab+4ac+4bc

=>36=4M

=>M=9

29 tháng 8 2018

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( a - c )2

=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc - c2 + a2 - 2ac +c2

=> a2 + b2 + c2 = 2ab + 2bc + 2ac

Có :  a + b + c = 6

=> ( a + b + c )2 = 62

=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 36

Mà a2 + b2 + c2 = 2ab + 2bc + 2ac

=> 2ab +  2ac + 2bc + 2ab + 2ac + 2bc = 36

=> 4ab + 4ac + 4bc = 36

=> ab + ac + bc = 9

Mà M = ab + ac + bc

Vậy M = 9