Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b
Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)
Ta chứng minh BĐT phụ sau:
\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)
Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)
\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)
\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)
\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)
Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)
Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)
Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng
Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)
Từ đó suy ra:
\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)
=> ĐPCM.
Cho x,y,z € Z+ tm: x+y+z=4
Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6