K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b

Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)

Ta chứng minh BĐT phụ sau:

\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)

Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)

\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)

\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)

\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)

Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)

Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)

Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng

Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)

Từ đó suy ra:

\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)

=> ĐPCM.

29 tháng 12 2018

Cho x,y,z € Z+ tm: x+y+z=4

Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz

2 tháng 1 2018

post ít một thôi

24 tháng 2 2016

Chi biet phan 5 thoi @

      Vi 3a=5b=12suy ra a=4 ;b=2,4  ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6

25 tháng 2 2016

nguyen xuan duong sr minh viet nham dau bai 3a-5b=12