Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)
Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)
Hay \(\Delta>\left(a-c\right)^2\ge0\)
Vậy ta có điều phải chứng mình
\(\Delta\) = b2 - 4ac = (5a + 2c)2 - 4ac = 25a2 + 20ac + 4c2 - 4ac = 25a2 + 16ac + 4c2
= 9a2 + (16a2 + 16ac + 4c2)
= 9a2 + (4a + 2c)2 \(\ge\) 0 với mọi a; c
=> Pt đã cho luôn có nghiệm
Gọi x0 là nghiệm chung của 2 phương trình
Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)
\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)
Mà \(a\ne b\Rightarrow x_0=c\)
Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2
Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)
Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)
Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:
x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0
Thay `b=5a+2c` vào `ax^2+bx+c=0`:
`ax^2+(5a+2c)x+c=0`
`=>Delta=(5a+2c)^2-4ac`
`=25a^2+20ac+4c^2-4ac`
`=25a^2+16ac+4c^2`
`=9a^2+(16a^2+16ac+4c^2)`
`=9a^2+(4a+2c)^2>=0`
`=>` ĐPCM
đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.
@nguyenthanhtuan cái này là chứng minh mà bạn.
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
Lời giải:
PT đã cho có hai nghiệm khi mà \(\Delta=b^2-4ac>0\)
Theo điều kiện đề bài ta có:
\(\Delta=b^2-4ac=\left (\frac{-6c-5a}{4}\right)^2-4ac=\frac{(5a+6c)^2-64ac}{16}\)
\(\Leftrightarrow \Delta=\frac{25a^2+36c^2-4ac}{16}=\frac{24a^2+(a-2c)^2+32c^2}{16}\)
Vì \(a\neq 0\Rightarrow 24a^2+(a-c)^2+32c^2>0\Rightarrow \Delta>0\)
Do đó PT trên có hai nghiệm phân biệt.
\(f\left(x\right)=\text{ax}^2+bx+c\)
Nếu a=0 thì ta có: \(4b+6c=0\) hay \(c=\dfrac{-2}{3}b\). Phương trình có dạng
\(bx-\dfrac{2}{3}b=0\Leftrightarrow x=\dfrac{2}{3}\) là 1 nghiệm
Xét \(a\ne0\). Khi đó
\(5a+4b+6c=0\Leftrightarrow\left(4a+2b+c\right)+\left(a+2b+4c\right)+c=0\)
\(f\left(2\right)+\dfrac{1}{4}f\left(\dfrac{1}{2}\right)+f\left(0\right)=0\)
\(\Leftrightarrow\text{af}\left(2\right)+\dfrac{1}{4}\text{af}\left(\dfrac{1}{2}\right)+\text{af}\left(0\right)=0\)
=> Tồn tại ít nhất 1 số hạng âm hoặc bằng 0, theo định lý đảo suy ra phương trình có nghiệm