Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
Để phương trình có nghiệm cần : \(\(\(\(\Delta\ge0\)\)\)\)
hay \(\(\(\(\orbr{\begin{cases}a\ge2\\a\le-2\end{cases}}\)\)\)\)và \(\(\(\(\orbr{\begin{cases}b\ge2\sqrt{17}\\b\le-2\sqrt{17}\end{cases}\left(\cdot\right)}\)\)\)\)
Gọi \(\(\(\(t\)\)\)\)là nghiệm chung 2 phương trình , ta có :
\(\(\(\(\hept{\begin{cases}t^2+t.a+1=0\\t^2+t.b+17=0\end{cases}}\)\)\)\)
\(\(\(\(\Rightarrow t\left(a-b\right)-16=0\Rightarrow a-b=\frac{16}{t}\)\)\)\)
Giải phương trình \(\(\(\(\left(1\right)\)\)\)\): tìm \(\(\(\(t\)\)\)\)theo \(a\):
\(\(\(\(t=\frac{-a\pm\sqrt{a^2-4}}{2}\Rightarrow b=a-\frac{32}{-a\pm\sqrt{a^2-4}}\)\)\)\)
Kết hợp với \(\(\(\(\left(\cdot\right)\)\)\)\): \(\(\(\(b\in(-\infty;-2\sqrt{17}]\)\)\)\)∪\(\(\(\([2\sqrt{17};+\infty)\)\)\)\)
+) Với \(\(\(\(b=a-\frac{32}{\sqrt{a^2-4}-a}=\frac{544a+\sqrt{a^2-4}}{32}\)\)\)\)
Nếu \(\(\(\(a\ge2\)\)\)\)thì \(\(\(b\ge18\left(tm\right)\)\)\)
Nếu \(\(\(\(a\le-2\)\)\)\), Ta phải chứng minh \(\(\(\(32a+\sqrt{a^2-4}\le-4\sqrt{17}\)\)\)\)hay \(\(\(\(32a+4\sqrt{17}\le-\sqrt{a^2-4}\)\)\)\)
____________cạn, hình như sai ở đâu , để xem lại________
_Sorry_
_Minh ngụy_
___Giải PT (1), tìm t theo a :_
.....................
\(a\ge2\Rightarrow b\ge18\left(tm\right)\)
\(a\le2\Rightarrow......................\)(luôn đúng với mọi \(b\))
+) Nếu \(b=a-\frac{32}{-a-\sqrt{a^2-4}}=\frac{544a-\sqrt{a^2-4}}{32}\). cũng tương tự như trên , thỏa mãn với
\(a\in(-\infty;-2]\)U \([2;+\infty)\)
Như vậy , tìm được b theo a \(b=\frac{544a\pm\sqrt{a^2-4}}{32}\)
Suy ra \(|a|+|b|=a+\frac{544+\sqrt{a^2-4}}{32}\)
Giờ chỉ việc xét \(|a|\in[2;+\infty)\)là ra min và a,b nha
_Minh ngụy_
\(ax^2+bx+c=0\)
Do phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)
\(\Rightarrow b,c\) trái đấu
Xét \(cx^2+bx+a=0\)
Giả sử phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )
Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt
\(\Rightarrow\) đpcm
Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )
Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )
Từ ( 1 ) và ( 2 )
Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
Gọi x0 là nghiệm chung của 2 phương trình
Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)
\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)
Mà \(a\ne b\Rightarrow x_0=c\)
Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2
Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)
Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)
Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:
x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0