Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
323 =17.19.
Ta có: \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮17,16^n-1⋮17\)(vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)(1)
Tương tự:
\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1⋮19,16^n-3^n⋮19\)(vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)(2)
Từ (1) và (2) \(\Rightarrow20^n+16^n-3^n-1⋮\left(17,19\right)=323\)(đpcm)
Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)
Ta có :
\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn ) (1)
Mặt khác :
\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)
Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\) (2)
Từ (1) và (2) suy ra đpcm
20n+16n-3n-1 \(⋮\)321
vì 323=17.19
Ta thấy : 20n+16n-3n-1
=(20n-1) + (16n-3n)
20n-1\(⋮\)19 với n chẵn
\(\Rightarrow\)(20n-1) + ( 16n -3n)\(⋮\)19 (1)
Mặt khác : 20n+16n-3n-1
=( 20n-3n) + ( 16n-1)
20n-3n\(⋮\)17 với n chẵn
16n-1 \(⋮\)17 với n chẵn
\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17 (2)
Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19
\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)
Tìm n thuộc tập N sao cho
a) n. n2 +1 chia hết cho 3
b)20n +16n -3n -1 chia hết cho 323
giúp mình nha
Câu 1:
Câu hỏi của pham minh quang - Toán lớp 6 | Học trực tuyến
Câu 2:
\(\left(y+2\right)x^{2019}=y^2+2x+1\)
Nhận thấy \(y=-2\) không phải nghiệm nên ta có:
\(x^{2019}=\frac{y^2+2y+1}{y+2}=y+\frac{1}{y+2}\)
Do \(x\) nguyên \(\Rightarrow x^{2019}\) nguyên \(\Rightarrow\frac{1}{y+2}\) nguyên
\(\Rightarrow y+2=Ư\left(1\right)=\left\{-1;1\right\}\)
\(y+2=-1\Rightarrow y=-3\Rightarrow x^{2019}=-3\) (ko có x nguyên thỏa mãn)
\(y+2=1\Rightarrow y=-1\Rightarrow x^{2019}=-1\Rightarrow x=-1\)
Vậy nghiệm nguyên của pt là \(\left(x;y\right)=\left(-1;-1\right)\)
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)