K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

20n+16n-3n-1  \(⋮\)321

vì 323=17.19

Ta thấy : 20n+16n-3n-1

            =(20n-1) + (16n-3n)

             20n-1\(⋮\)19 với n chẵn

 \(\Rightarrow\)(20n-1) + ( 16-3n)\(⋮\)19      (1)

Mặt khác : 20n+16n-3n-1

              =( 20n-3n) + ( 16n-1)

               20n-3n\(⋮\)17 với n chẵn 

               16n-1  \(⋮\)17 với n chẵn 

\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17     (2)

Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19

\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)

7 tháng 8 2020

323 =17.19.

Ta có:  \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮17,16^n-1⋮17\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)(1)

Tương tự:

\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1⋮19,16^n-3^n⋮19\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\)(2)

Từ (1) và (2) \(\Rightarrow20^n+16^n-3^n-1⋮\left(17,19\right)=323\)(đpcm)

4 tháng 10 2017

Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)

Ta có :

\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn )   (1)

Mặt khác :

\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)

Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\)  (2)

Từ (1) và (2) suy ra đpcm 

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

1 tháng 2 2021

mấy anh chị giúp em với