Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
EB chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó;ΔABE=ΔHBE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra:EK=EC
d: Ta có: AE=EH
mà EH<EC
nên AE<EC
Câu 2:
Xét ΔABC có \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow\widehat{ACB}+\widehat{ABC}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{OBC}+\widehat{OCB}=90^0-\dfrac{1}{2}\widehat{A}\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
\(\Leftrightarrow\widehat{BOC}=180^0-90^0+\dfrac{1}{2}\widehat{A}=90^0+\dfrac{\widehat{A}}{2}\)
Câu 1 : C
Câu 2 : C
Câu 3 : A B C D M K H 1 2
a) Xét tam giác AMB và tam giác DMC , có :
AM = DM ( gt )
BM = CM ( gt )
góc AMB = góc DMC ( đối đỉnh )
=> tam giác AMB = tam giác DMC
=> DC = AB ( hai cạnh tương ứng )
Vậy DC = AB
b) Xét tam giác AKM và tam giác DHM , có :
góc AKM = góc DHM ( = 90o )
góc M1 = góc M2 ( đối đỉnh )
MA = MD ( gt )
=> tam giác AKM = tam giác DHM ( g-c-g )
=> HD = AK ( hai cạnh tương ứng )
=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy HD = AK ; HD // AK ( đpcm )
@Trần Việt Linh
@soyeon_Tiểubàng giải
@Hoàng Lê Bảo Ngọc
@Lê Nguyên Hạo
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi a = b.
Cauchy-shwarz:
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)
\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
1)
a) Xét 2 \(\Delta\) \(ABC\) và \(ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)
=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(BC\) // \(ED.\)
c) Xét 2 \(\Delta\) vuông \(AEH\) và \(AFH\) có:
\(\widehat{AHE}=\widehat{AHF}\left(=90^0\right)\)
\(EH=FH\left(gt\right)\)
Cạnh AH chung
=> \(\Delta AEH=\Delta AFH\) (hai cạnh góc vuông tương ứng bằng nhau).
=> \(AE=AF\) (2 cạnh tương ứng).
Mà \(AE=AC\left(gt\right)\)
=> \(AF=AC\left(đpcm\right).\)
Chúc bạn học tốt!
3:
Xét ΔABD và ΔKBD ta có:
BK = AB (gt)
\(\widehat{ABD}=\widehat{DBK}\) (DB là phân giác của góc ABC)
BD: cạnh chung
=> ΔABD = ΔKBD (c - g - c)
b/ Có ΔABD = ΔKBD (câu a)
=> \(\widehat{DKB}=\widehat{DAB}=90^0\) (2 góc tương ứng)
=> \(DK\perp BC\) (1)
Lại có AH ⊥ BC (gt) (2)
Từ (1) và (2)
=> DK // AH
P/s: Mik làm đến đây thôi vì phải ôn bài nữa!
Cái bài này lớp 7 chắc ???
Trong toán học, bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
\(\frac{a+b}{2}\)\(\ge\)\(\sqrt{ab}\)
Đẳng thức xảy ra khi và chỉ khi \(a\)\(=\)\(b\)
\(\frac{x_1+x_2+...+x_n}{n}\)\(\ge\)\(\sqrt[n]{x_1\times x_2\times...\times x_n}\)
Dấu "=" xảy ra khi và chỉ khi x1 = x2 = ... = xn