Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : C
Câu 2 : C
Câu 3 : A B C D M K H 1 2
a) Xét tam giác AMB và tam giác DMC , có :
AM = DM ( gt )
BM = CM ( gt )
góc AMB = góc DMC ( đối đỉnh )
=> tam giác AMB = tam giác DMC
=> DC = AB ( hai cạnh tương ứng )
Vậy DC = AB
b) Xét tam giác AKM và tam giác DHM , có :
góc AKM = góc DHM ( = 90o )
góc M1 = góc M2 ( đối đỉnh )
MA = MD ( gt )
=> tam giác AKM = tam giác DHM ( g-c-g )
=> HD = AK ( hai cạnh tương ứng )
=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy HD = AK ; HD // AK ( đpcm )
A B C 1 2 3 P/s : Hình ảnh chỉ có tính chất minh họa cho sản phẩm x
Theo đề ta giải được : \(\widehat{A}=100^0\)
Gọi à là tia phân giác ngoài của góc A .
\(\Rightarrow\widehat{A_2}=\widehat{A_3}=\frac{\left(180^0-100^0\right)}{2}=\frac{80^0}{2}=40^0\)
\(\Rightarrow\widehat{A_2}=\widehat{C}\left(=40^0\right)\)
Mà góc A 1 và góc C là hai góc so le trong .
=> Ax // BC ( đpcm )
Bài 1: Hình tự vẽ :v
Ta có : BE=BC ⇒ΔABE cân ⇒∠E=∠BCE
ΔABC là góc ngoài ΔBEC⇒∠ABC=∠E+∠BCE=2∠E
Mà ∠ABD=∠DBC⇒∠E=∠BCE=∠ABD=∠DBC
⇒BD//CE
Bài 2 :
ΔΔ MAB cân tại M => MA= MB
Mà MC= MB => MA= MB= MC
Δ ABC có trung tuyến ứng với một cạnh bằng 1 nửa cạnh đấy nên là tam giác vuông tại A.
=> ˆBAC=90o
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
Bài 2:
Vì BI,CI lần lượt là tia phân giác của góc B và góc C
Ta có:
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\frac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(\widehat{BIC}=180^o-\frac{180^o-\widehat{A}}{2}=125^o\)
BK,BI là các tia phân giác của hai góc kề bù \(\Rightarrow\widehat{EBK}=90^o\)
Tương tự ta có: \(\widehat{ICK}=90^o\)
Tứ giác IBKC có:
\(\widehat{IBK}+\widehat{ICK}+\widehat{BIC}+\widehat{BKC}=360^o\)
\(\Rightarrow\widehat{BKC}+90^o+90^o+125^o=360^o\Rightarrow\widehat{BKC}=55^o\)
\(\Delta EBK\) vuông tại B có \(\widehat{EKC}=55^o\)
\(\Rightarrow\widehat{BEK}=90^o-55^o=35^o\)
Bài 3 (sorry vì lười vẽ hình nha ~~)
a. Xét ΔABE vuông tại A ta có \(\widehat{ABE}+\widehat{BEA}=90^o\)(phụ nhau)
\(\Rightarrow\widehat{BEA}=90^o-\widehat{ABE}< 90^o\)(cái này là hiển nhiên rùi nhé :v) (1)
Mặt khác: \(\widehat{BEA}+\widehat{BEC}=180^o\left(kebu\right)\Leftrightarrow\widehat{BEC}=180^o-\widehat{BEA}\)(2)
Từ (1) và (2) suy ra \(\widehat{BEC}>90^ohay\widehat{BEC}\) là góc tù.
b. Ta có: \(\widehat{C}-\widehat{B}=10^o\Leftrightarrow\widehat{C}=10^o+\widehat{B}\)
Xét ΔABC vuông tại A ta có:
\(\widehat{B}+\widehat{C}=90^o\Leftrightarrow\widehat{B}+\widehat{B}+10^o=90^o\Leftrightarrow2\widehat{B}=80^o\Leftrightarrow\widehat{B}=40^o\\ \Rightarrow\widehat{C}=\widehat{B}+10^o=40^o+10^o=50^o\)
Vì BE là tia phân giác của góc ^B nên ta có:
\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}=\frac{40^o}{2}=20^o\)
Ta có: \(\widehat{ABE}+\widehat{AEB}=90^o\left(câua\right)\Leftrightarrow20^o+\widehat{AEB}=90^o\Leftrightarrow\widehat{AEB}=70^o\)
\(\widehat{BEC}+\widehat{AEB}=180^o\left(câua\right)\Leftrightarrow\widehat{BEC}+70^o=180^o\Leftrightarrow\widehat{BEC}=110^o\)
Câu 2:
Xét ΔABC có \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow\widehat{ACB}+\widehat{ABC}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{OBC}+\widehat{OCB}=90^0-\dfrac{1}{2}\widehat{A}\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
\(\Leftrightarrow\widehat{BOC}=180^0-90^0+\dfrac{1}{2}\widehat{A}=90^0+\dfrac{\widehat{A}}{2}\)