Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K I 1 2 1 2 3 4
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)
\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)
Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)
\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)
Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)
A B C O 1 2 1 2 1 1
a) (thay vô y như toán đại í )
t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^
t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ
=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^
=> BOC^=BAC^+ABO^+ACO^
b) B2^+C2^=90 độ - A1^:2
=> B2^+C^2= 90 độ - (180 độ - B1^ - B2^ - C1^ - C2^):2
=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2
=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)
=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^
B C A I 1 1 2 2 M
a) xét \(\Delta ABC\)CÓ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)
mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C
\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)
\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)
\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)
\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)
XÉT \(\Delta BCI\)Có
\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)
THAY \(50^o+\widehat{BIC}=180^o\)
\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)
B) TA CÓ
\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)
\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)
mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)