Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{8x}{3-6x}\left(ĐK:x\ne\pm\frac{1}{2}\right)\)
\(=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{8x}{3\left(1-2x\right)}\)
\(=\frac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{3\left(1-2x\right)}{8x}\)
\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{-3\left(2x-1\right)}{8x}\)
\(=\frac{-3}{2x+1}\)
b) Với mọi x thuộc ĐKXĐ mà \(A=-\frac{3}{4031}\Leftrightarrow\frac{-3}{2x+1}=\frac{-3}{4031}\Leftrightarrow2x+1=4031\Leftrightarrow x=2015\left(tm\right)\)
Vậy x=2015 thì \(A=-\frac{3}{4031}\)
a:
Sửa đè: \(B=\left(2x+1+\dfrac{1}{2x-1}\right):\left(\dfrac{2x^2-6x}{x-3}-\dfrac{4x^2}{2x-1}\right)\)
\(B=\dfrac{4x^2-1+1}{2x-1}:\left(2x-\dfrac{4x^2}{2x-1}\right)\)
\(=\dfrac{4x^2}{2x-1}:\dfrac{4x^2-2x-4x^2}{2x-1}\)
\(=\dfrac{4x^2}{-2x}=-2x\)
b: |x-2|=1
=>x-2=1 hoặc x-2=-1
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì A=-2*1=-2
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
\(a.B=\left[\left(2x+1\right)+\dfrac{1}{2x-1}\right]:\left(\dfrac{2x^2-6x}{x-3}-\dfrac{4x^2}{2x-1}\right)\) ( x # \(\dfrac{1}{2}\) ; x # 3 ; x # 0 )
\(B=\dfrac{4x^2}{2x-1}.\dfrac{\left(x-3\right)\left(2x-1\right)}{2x\left(x-3\right)\left(2x-1\right)-4x^2\left(x-3\right)}=4x^2.\dfrac{x-3}{-2x\left(x-3\right)}=-2x\) b. \(x^2-3x=0\) ⇔ \(x\left(x-3\right)=0\text{⇔}x=0\left(KTM\right)\) hoặc \(x=3\left(KTM\right)\)
Vậy ,...
Ta có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | + 2x - 1 = - 4x + 2x - 1 = - 2x - 1
Chọn đáp án C.