K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

a) \(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{8x}{3-6x}\left(ĐK:x\ne\pm\frac{1}{2}\right)\)

\(=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{8x}{3\left(1-2x\right)}\)

\(=\frac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{3\left(1-2x\right)}{8x}\)

\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{-3\left(2x-1\right)}{8x}\)

\(=\frac{-3}{2x+1}\)

b) Với mọi x thuộc ĐKXĐ mà \(A=-\frac{3}{4031}\Leftrightarrow\frac{-3}{2x+1}=\frac{-3}{4031}\Leftrightarrow2x+1=4031\Leftrightarrow x=2015\left(tm\right)\)

Vậy x=2015 thì \(A=-\frac{3}{4031}\)

1 tháng 11 2019

a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)

\(=\frac{2\left(2x+1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}+\frac{3\left(2x+3\right)\left(2x-3\right)}{\left(2x+1\right)\left(2x+3\right)\left(2x-3\right)}-\frac{\left(6x+5\right)\left(2x+1\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)

\(=\frac{\left(4x+2\right)\left(2x-3\right)+3\left(4x^2-9\right)-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)

\(=\frac{8x^2-8x-6+12x^2-27-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)

\(=\frac{8x^2-24x-38}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)

Check hộ mình xem nghi nghi sai sai

1 tháng 11 2019

b) \(Q=\left(\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left(\frac{x+1}{2x-1}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4x^2-4}{5}\)

\(=\left(\frac{2\left(x+1\right)\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2.3\left(2x-1\right)}{2\left(x-1\right)\left(x+1\right)\left(2x-1\right)}-\frac{\left(x+3\right)\left(2x-1\right)\left(x-1\right)}{2\left(x+1\right)\left(2x-1\right)\left(x-1\right)}\right).\frac{4x^2-4}{5}\)

\(=\frac{2\left(x+1\right)\left(x^2-1\right)+12x-6-\left(2x^2+5x-3\right)\left(x-1\right)}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)

\(=\frac{2\left(x^3+x^2-x-1\right)+12x-6-2x^3-5x^2+3x+2x^2+5x-3}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)

\(=\frac{2x^3+2x^2-2x-2+20x-2x^3-3x^2-9}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)

\(=\frac{-x^2+18x-11}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{-x^2+18x-11}{\left(2x-1\right)}.\frac{2}{5}\)

\(=\frac{-2x^2+36x-22}{5\left(2x-1\right)}\)

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

9 tháng 6 2017

a,

\(\Leftrightarrow A=\left(\frac{x+1}{\left(x+1\right)\left(x-1\right)}+\frac{x}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

b, dùng máy tính kq là-3