Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tốc độ cực đại của vật trong quá trình dao động là 0,4 m/s
Thế năng cực đại của vật trong quá trình dao động là
\(W_đ=\dfrac{1}{2}mv^2=\dfrac{1}{2}.2.0,4^2=0,16\left(J\right)\).
Biểu thức động năng biến thiên theo thời gian:
\(W_đ=\dfrac{1}{2}mv^2=\dfrac{1}{2}\cdot m\omega^2A^2sin^2\left(\omega t+\varphi\right)\)
\(\Rightarrow W_đ=\dfrac{1}{2}\cdot0,5\cdot0,1^2\cdot sin^2\left(\pi t+\dfrac{\pi}{3}\right)=0,0025sin^2\left(\pi t+\dfrac{\pi}{3}\right)\left(J\right)\)
Biểu thức thế năng biến thiên theo thời gian:
\(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}kA^2cos^2\left(\omega t+\varphi\right)\)
\(\Rightarrow W_t=\dfrac{1}{2}\cdot m\omega^2A^2cos^2\left(\omega t+\varphi\right)=0,025cos^2\left(\pi t+\dfrac{\pi}{3}\right)\left(J\right)\)
a) Ta có:
\(x=\dfrac{A}{2}=\dfrac{W_t}{W}=\dfrac{\dfrac{1}{2}mw^2x^2}{\dfrac{1}{2}mw^2A^2}=\dfrac{1}{4}\)
\(\Rightarrow W_t=25\%W\) và \(W_đ=75\%W\)
b) Mà:
\(W_t=W_đ\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{1}{2}mw^2x^2}{\dfrac{1}{2}mw^2A^2}=\dfrac{1}{2}\)
\(\Rightarrow x=\pm\dfrac{A}{\sqrt{2}}\)
Từ đồ thị ta có:
Tại thời điểm ban đầu t = 0: Wđ = 0,015 J ⇒Wt = 0,02−0,015 = 0,005(J)
⇔\({{\rm{W}}_t} = \frac{{\rm{W}}}{4} \Rightarrow {x_0} = \pm \frac{A}{2}\)
Tại thời điểm t1 = \(\frac{1}{6}\): Wđ = 0 ⇒ x1 = ±A
Dựa vào đồ thị ta suy ra: x0 = \(\frac{A}{2}\); x1 = A
Khoảng thời gian từ x0 đến x1 là: Δt = \(\frac{T}{6}\)⇔T = 1(s) ⇔ ω = \(\frac{{2\pi }}{T} = 2\pi \) (rad/s)
\({{\rm{W}}_{{\rm{dmax}}}} = \frac{1}{2}m{\omega ^2}{A^2} = 0,02 \Leftrightarrow A = \sqrt {\frac{{{{\rm{W}}_{{\rm{dmax}}}}}}{{m{\omega ^2}}}} = \sqrt {\frac{{2.0,02}}{{0,4{{\left( {2\pi } \right)}^2}}}} = 0,05m = 5cm\)
Tại t=0:
\(\left\{ \begin{array}{c}{x_0} = A\cos \varphi = \frac{A}{2}\\v = - A\sin \varphi > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi = \frac{1}{2}\\\sin \varphi < 0\end{array} \right. \Rightarrow \varphi = - \frac{\pi }{3}\)
Phương trình dao động của vật: x = 5cos(2πt − \(\frac{\pi }{3}\))(cm)
Phát biểu nào sau đây là sai khi nói về năng lượng của hệ dao động điều hoà:
A. Hệ có thế năng cực đại khi vật ở vị trí biên dương.
B. Vật có động năng cực đại khi ở vị trí cân bằng.
C. Hệ có cơ năng không đổi trong suốt quá trình dao động.
D. Hệ có thế năng bằng không khi vật ở vị trí biên âm
Hệ có động năng cực đại tại VTCB, thế năng cực đại tại vị trí hai biên (biên âm và dương) và ngược lại.
Khi thế năng của vật tăng thì động năng của vật giảm và cơ năng luôn bằng tổng giá trị của động năng và thế năng .
a) Cơ năng trong quá trình dao động là:
W=\(\frac{1}{2}\)mω2A2=\(\frac{1}{2}\).0,2.202.52=1000(J)
b) Biểu thức thế năng là:
Wt=\(\frac{1}{2}\)mω2A2cos2(ωt+φ0)= \(\frac{1}{2}\).0,2.202.52cos2(20t)=1000cos2(20t)
Biểu thức động năng là:
Wd=\(\frac{1}{2}\)mω2A2sin2(ωt+φ0)= \(\frac{1}{2}\).0,2.202.52sin2(20t)=1000sin2(20t)