Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(x^2-8x+y^2+6y+25=0\)
\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)
Vậy...
Bài 2:
Phương trình có nghiệm duy nhất là x = -2/3 nên ta có:
\(\left(4+a\right).\frac{-2}{3}=a-2\)
\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)
\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)
\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)
\(\Leftrightarrow\)\(a=-\frac{2}{5}\)
Bài 3:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)
\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)
\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)
\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)
\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)
Bài 4:
\(xy-3x+2y=13\)
\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)
\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)
x+2 | -7 | -1 | 1 | 7 |
y-3 | -1 | -7 | 7 | 1 |
x | -9 | -3 | -1 | 5 |
y | 2 | -4 | 10 | 4 |
Vậy...
Bài 5:
\(xy-x-3y=2\)
\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)
x-3 | -5 | -1 | 1 | 5 |
y-1 | -1 | -5 | 5 | 1 |
x | -2 | 2 | 4 | 8 |
y | 0 | -4 | 6 | 2 |
Vậy....
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=7-\left(x-2\right)^2\le7\Rightarrow A_{max}=7\Leftrightarrow x-2=0\Rightarrow x=2\)
mk tra loi cau b con lai bn dua vao de giai nhé
b. x - x^2 = -(x^2 - x)
= -[ (x^2 - 2.x.1/2 +(1/2)^2-(1/2)^2
= -[(x-1/2)^2 - (1/2)^2]
= -(x-1/2)^2 + 1/4 = 1/4 - (x-1/2)^2
Vì (x-1/2)^2 >=0 nên 1/4 - (x-1/2)^2 <=1/4 với mọi x
Do đó đa thức đã cho có gtln la 1/4 tại x = 1/2
( ý 2 là thêm bớt hạng tử nha)
Bài 2: Biểu thức không có GTLN mà chỉ có GTNN. Bạn có muốn tìm GTNN không?
a. \(M=4x-x^2+5=-\left(x^2-4x+2^2\right)+9\\ =-\left(x-2\right)^2+9\ge9\Leftrightarrow x-2=0\Rightarrow x=2\)
\(MaxM=9\) khi x =2
b.
\(N=2x-2x^2-5=-2\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{2^2}\right)-4\\ =-2\left(x-\dfrac{1}{2}\right)^2-4\ge-4\Leftrightarrow x=\dfrac{1}{2}\)
\(MaxN=-4\) khi x =1/2