Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số liên tiếp
nên \(A⋮3!\)
hay A chia hết cho 6
Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên
Ta thấy:
a) \(35^6-35^5=35^5\cdot\left(35-1\right)=35^5\cdot34\)
Do 34 chia hết cho 34
=> 355 * 34 chia hết cho 34
=> 356 - 355 chia hết cho 34 ( đpcm )
b) \(43^4+43^5=43^4\cdot\left(1+43\right)=43^4\cdot44\)
Do 44 chia hết cho 44
=> 434 * 44 chia hết cho 44
=> 434 + 435 chia hết cho 44 ( đpcm )