K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của CB

Xét ΔBDC có

H là trung điểm của BC

N là trung điểm của BD

Do đó: HN là đường trung bình của ΔBDC

Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)

b: Xét ΔANH có

M là trung điểm của AH

MD//NH

Do đó: D là trung điểm của AN

Suy ra: AD=DN

mà DN=NB

nên AD=DN=NB

Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)

4 tháng 7 2021

a,

\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực

\(=>BH=HC\)

mà N là trung điểm BD\(=>BN=ND\)

=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)

b,từ ý a \(=>DM//HN\) mà M là trung điểm AH

=>AD=DN

mà DN=BN=>AD=DN=BN

mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)

7 tháng 9 2019

Vào trang cá nhân e ạ, vui lém

Tự vẽ hình nha 

a) VÌ tam giác ABC cân tại A mà AH là dduongf cao

=> AH là trung trực , trung tuyến , phân giác , dduongf cao

vì AH là trung tuyến 

=> BH = HC

mà ND = NB 

=> NH là đường trung bình của tam giác BDC

=> NH // DC  hay NH // DM

b) Vì NH // DM 

AM = MH 

=> AD = DN 

mà DN = BN

=> AD = DN = BN

=> AD \(=\frac{1}{3}\)AB

Vì AD = DN ( cmt ) 

 AM = MH ( GT )

=> DM là đường trung bình của tam giác ANH

=> DM = \(\frac{1}{2}\)HN

Study well 

7 tháng 8 2018

oho

1 tháng 8 2019

a) +Xét △ABC có:

△ABC cân tại A. (gt)

AH là đường cao. (gt)

⇒ AH là đường trung tuyến.

⇒ H là trung điểm BC.

+Xét △BDC có:

N là trung điểm BD. (gt)

H là trung điểm BC. (cmt)

⇒ HN là đường trung bình của △BDC.

⇒ HN // DC; HN = 1/2.DC

b) +Xét △AHN có:

M là trung điểm AH. (gt)

DM // NH (NH // DC; M ∈ DC)

D ∈ AN

⇒ D là trung điểm AN.

⇒AD=DN.

Mà DN=NB (N trung điểm BD)

⇒ AD= 1/3. AB ( AD+DN+NB=AB )

3 tháng 10 2021
1+1bang mây

? Thế bn bị j mà ko bt

19 tháng 7 2018

Bài này ko khó đâu. Mình gợi ý nhé.

a, Tam giác ABC cân tại A có AH là đường cao nên AH là đường trung tuyến

Suy ra: H là trung điểm của BC

HN là đường trung bình của tam giác BDC nên HN song song với DC

b, Tam giác AHN có M là trung điểm của AH và HN song song với DM.

Do đó: D là trung điểm của AN

Ta có: AD =DN

          DN =NB

          AD +DN+NB =AB

Vậy AD =1/3 AB.

Chúc bạn học tốt.

          

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC