Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của CB
Xét ΔBDC có
H là trung điểm của BC
N là trung điểm của BD
Do đó: HN là đường trung bình của ΔBDC
Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)
b: Xét ΔANH có
M là trung điểm của AH
MD//NH
Do đó: D là trung điểm của AN
Suy ra: AD=DN
mà DN=NB
nên AD=DN=NB
Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)
Tự vẽ hình nha
a) VÌ tam giác ABC cân tại A mà AH là dduongf cao
=> AH là trung trực , trung tuyến , phân giác , dduongf cao
vì AH là trung tuyến
=> BH = HC
mà ND = NB
=> NH là đường trung bình của tam giác BDC
=> NH // DC hay NH // DM
b) Vì NH // DM
AM = MH
=> AD = DN
mà DN = BN
=> AD = DN = BN
=> AD \(=\frac{1}{3}\)AB
Vì AD = DN ( cmt )
AM = MH ( GT )
=> DM là đường trung bình của tam giác ANH
=> DM = \(\frac{1}{2}\)HN
Study well
a) +Xét △ABC có:
△ABC cân tại A. (gt)
AH là đường cao. (gt)
⇒ AH là đường trung tuyến.
⇒ H là trung điểm BC.
+Xét △BDC có:
N là trung điểm BD. (gt)
H là trung điểm BC. (cmt)
⇒ HN là đường trung bình của △BDC.
⇒ HN // DC; HN = 1/2.DC
b) +Xét △AHN có:
M là trung điểm AH. (gt)
DM // NH (NH // DC; M ∈ DC)
D ∈ AN
⇒ D là trung điểm AN.
⇒AD=DN.
Mà DN=NB (N trung điểm BD)
⇒ AD= 1/3. AB ( AD+DN+NB=AB )
Bài này ko khó đâu. Mình gợi ý nhé.
a, Tam giác ABC cân tại A có AH là đường cao nên AH là đường trung tuyến
Suy ra: H là trung điểm của BC
HN là đường trung bình của tam giác BDC nên HN song song với DC
b, Tam giác AHN có M là trung điểm của AH và HN song song với DM.
Do đó: D là trung điểm của AN
Ta có: AD =DN
DN =NB
AD +DN+NB =AB
Vậy AD =1/3 AB.
Chúc bạn học tốt.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a,
\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực
\(=>BH=HC\)
mà N là trung điểm BD\(=>BN=ND\)
=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)
b,từ ý a \(=>DM//HN\) mà M là trung điểm AH
=>AD=DN
mà DN=BN=>AD=DN=BN
mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)