Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Chú ý: \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+....b^{n-1}\right)\)
Nghĩa là chúng ta luôn có a^n- b^n chia hết co a-b, với a, b nguyên
\(6^{2n}+19^n-2^n.2=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)
\(36^n-2^n⋮34\Rightarrow36^n-2^n⋮17\)
\(19^n-2^n⋮17\)
Vậy ....
Bài 1 :
a) Ta có : 3210 = (25)10 = 250
1615 = (24)15 = 260
250 < 260 => 3210 < 1615
b) Ta có : 2711 = (33)11 = 333
818 = (34)8 = 332
333 > 332 => 2711 > 818
c) Ta có : 536 = (53)12 = 12512
1124 = (112)12 = 12112
12512 > 12112 => 536 > 1124
d) Ta có : 216 = 213 . 2 . 2 . 2 = 213 . 8
7. 213 < 213 . 8 => 7 . 213 < 216
Bài 3 :
Ta có :
S = 1 + 2 + 22 + 23 + ... + 22018
S = (1 + 2) + (22 + 23 + 24) + ... + (22016 + 22017 + 22018)
S = 3 + 28 + ... + 22015(2 + 22 + 23)
S = 3 + 28 + ... + 22015. 14
Vậy số dư khi chia S cho 7 là 3