Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).
Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).
Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)
A B C H K D
Ta có
\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)
\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)
Xét tg vuông ABC có
\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\)
Xét tg vuông ABD có
\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)
Thay (1) và (2) vào (*)
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)
Xét tg BKC có
\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)
Xét tg vuông ABK có
\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có
\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)
Thay (3) vào (**) ta có
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)