Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
c)\(\left(2x-1\right)^3=-8=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
a: \(\left(2x+1\right)^2=\left(x-1\right)^2\)
=>2x+1=x-1 hoặc 2x+1=1-x
=>x=-2 hoặc x=0
b: \(\left(x^2-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow x\in\left\{\sqrt{5};-\sqrt{5};-3\right\}\)
c: \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
hay \(x\in\left\{1;43\right\}\)
d: \(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
=>x+1=0
hay x=-1
(5x+2)(x-7)=0
suy ra 5x+2=0 hoặc x-7=0
5x = -2
x = -2/5 hoặc x=7
\(x^2-x-6=0\Rightarrow x^2-2x+3x-6\\ \Rightarrow x\left(x-2\right)+3\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
hay x-2=0 hoặc x+3 = 0
vậy x = 2 hoặc x = -3
1.\(45^{10}.5^{30}=45^{10}.125^{10}=\left(45.125\right)^{10}=5625^{10}\)
2.a. \(\left(2x-1\right)^3=-8\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
c. \(\left(2x+3\right)^2=\frac{9}{121}\Leftrightarrow\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
d.\(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-1=-\frac{2}{3}\Leftrightarrow x=\frac{1}{9}\)
4.
a.\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Do \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b.\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
c.\(2^{332}=\left(2^3\right)^{110}.2^2=8^{110}.4\)
\(3^{223}=\left(3^2\right)^{110}.3^3=\left(3^2\right)^{110}.9=9^{110}.9\)
Ta thấy \(4.8^{110}< 9.9^{110}\)
Vậy \(2^{332}< 3^{223}\)
a. (x-1/2)2=0
=> x-1/2=0
=> x=1/2
b. (x-2)2=1
=> (x-2)2=12=(-1)2
=> x-2=1 hoặc x-2=-1
=> x=3 hoặc x=1
c. (2x-10)3=-8
=> (2x-10)3=(-2)3
=> 2x-10=-2
=> 2x=-2+10
=> 2x=8
=> x=8:2
=> x=4
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
=> x+1/2=1/4 hoặc x+1/2=-1/4
=> x=1/4-1/2 hoặc x=-1/4-1/2
=> x=-1/4 hoặc x=-3/4
(x - 1/2)2 = 0
=> x - 1/2 = 0
x = 1/2
...............Tương tự