K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

1):

Ta có: 51 chia hết cho 3

120 chia hết cho 3

453 chia hết cho 3

=>51a+120b+453c chia hết cho 3

2):

Ta có:

A=5+52+53+...+530

=>A=(5+52)+52(5.52)+...+528(5+52)

=>A=(5+52).(52+54+...+528)

Vì 5+52=30 chia hết cho 6

=>A chia hết cho 6

9 tháng 10 2015

4 / tổng sau có chia hết cho 9

vì 2+4+8+16+32+64

ta nhóm : ( 2+16 )+ ( 4+32) + 63+1+8

= 18+36+63+9

vì 18 chia hết cho 9

  36 chia hết cho 9

36 chia hết cho 9

9 chia hết cho 9

vậy tổng chia hết cho 9

10 tháng 8 2017

2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)

Ta có:

\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(x\inƯC\left(51,68\right)\)

\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)

Vì x > 9 nên x = 17

Vậy số chia là 17

10 tháng 8 2017

3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh

b,

\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)

Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N

25 tháng 7 2018

Ra A= 5^11-5^3

Vì 5^11chia hết 125

     5^3 chia hết cho125

=> 5^11-5^3 chia hết cho125

25 tháng 7 2018

A=(5^11-5^3)/4

14 tháng 8 2015

A=5+52+53+54+...+529+530

=(5+52)+(53+54)+...+(529+530)

=5(5+1)+53.(5+1)+...+529.(5+1)

=6.(5+53+...+529) chia hết cho 6(đpcm)

29 tháng 11 2016

ai biết xí :v

30 tháng 9 2015
 
 

 



a) Theo đề bài ra, ta có : ab¯¯¯+ba¯¯¯=(10a+b)+(10b+a)=11a+11b=11(a+b)� ��11

b) Theo đề bài ra ta có : ab¯¯¯−ba¯¯¯=(10a+b)−(10b+a)=10a+b−10b� ��a=9a−9b=9(a−b)⋮9

Câu 3: 

a: \(\Leftrightarrow n-1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

b: \(\Leftrightarrow4n+2+1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)

\(\Leftrightarrow n=\dfrac{13k+5}{4}\)