Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
8-1=x
Thay vào B
=>\(B=x^{2006}+\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-.......+\left(x+1\right)x^2-\left(x+1\right)x-5\)
=>tự giải típ
Đặt \(A=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
Vì \(x=7\) \(\Rightarrow\) \(x+1=8\) \(\left(\text{*}\right)\)
Thay \(\left(\text{*}\right)\) vào \(A\), ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
Tại \(x=7\) thì khi đó, \(A=7-5=2\)
Vậy, giá trị cua biểu thức \(x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\) là \(2\)
ta có: A=7^15- (7+1)7^14+(7+1)7^13-...-(7+1)7^2+(7+1)7-5
A=7^15-7^15-7^14+7^14+7^13-...-7^3-7^2+7^2+7-5
A=7-5=2
Čħàō ƃạñ ! Mình xin trả lời câu hỏi của bạn như sau :
Ta có :
P = x^15 - 8x^14 + 8x^13 - 8x^12 +... - 8x² + 8x - 5
= x^15 - 8x^13(x - 1) - 8x^11(x-1) +... - 8x(x - 1) - 5
= x^15 - 8(x - 1)(x^13 + x^11 +... + x) - 5 (♠)
Xét : A = x^13 + x^11 + x^9 + x^7+... + x³ + x
⇔ x².A = x^15 + x^13 + x^11 + x^9 + x^7 +... + x³
⇔x².A - A = (x^15 + x^13 + x^11 + x^9 +... + x³) - (x^13 + x^11 + x^9 + x^7+... + x) = x^15 - x
⇔ A = (x^15 - x)/(x² - 1)
Thay vào (♠) ta được :
P = x^15 - 8(x - 1)(x^15 - x)/(x² - 1) - 5
= x^15 - 8(x^15 - x)/(x + 1) - 5
Thay x = 7 vào biểu thức trên ta được : P = 7^15 - 8(7^15 - 7)/(7+1) - 5 = 2
Vậy P = 2
P/S : Mình đã thử bằng Máy tính cầm tay và kết quả = 2 là chính xác !
Bài của bạn bị nhầm ở chỗ : (x+1)(x¹⁴ –x¹³ +x¹²–... + x² –x+1) = x¹⁵ + 1 chứ không phải = x¹⁵ – 1
Ta có : x = 7 ⇒ x + 1 = 8
Thay x + 1 = 8 vào A , ta được :
A = x15 - ( x + 1)x14 + ( x + 1)x13 - ( x + 1)x12 +....- ( x + 1)x2 + ( x + 1)x - 5
A = x15 - x15 - x14 + x14 + x13 - x13 - x12 +....- x3 - x2 + x2 + x - 5
A = x - 5 = 7 - 5 = 2
a) Ta có: \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\)
\(=x^2-3x^2y-\frac{12}{5}y^2+3x^2y\)
\(=x^2-\frac{12}{5}y^2\)(1)
Thay x=-2 và \(y=-\frac{1}{2}\) vào biểu thức (1), ta được:
\(\left(-2\right)^2-\frac{12}{5}\cdot\left(-\frac{1}{2}\right)^2\)
\(=4-\frac{12}{5}\cdot\frac{1}{4}\)
\(=4-\frac{3}{5}=\frac{17}{5}\)
Vậy: Giá trị của biểu thức \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\) tại x=-2 và \(y=-\frac{1}{2}\) là \(\frac{17}{5}\)
b) Ta có: x=7
nên 8=x+1
Thay 8=x+1 vào biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\), ta được:
\(x^{15}-x^{14}\cdot\left(x+1\right)+x^{13}\cdot\left(x+1\right)-x^{12}\cdot\left(x+1\right)+...-x^2\cdot\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+x^{12}-...-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
Vậy: Giá trị của biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\) tại x=7 là 2
a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:
\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)
\(=3y+xy-24x+4xy-5xy+24x\)
\(=3y\)
\(=\frac{3}{119}\)
b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)
\(=7-5\)
= 2
\(B=x^{15}-8x^{14}+8x^3-8x^2+...-8x^2+8x-5\)
Vì \(x=7\) nên
\(x+1=8\)
\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^3-\left(x+1\right)x^2+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(B=x^{15}-x^{15}-x^{14}+x^{14}+x^3-x^3-x^2+...-x^2+x^2+x-5\)
\(B=x-5\)
\(B=>7-5=2\)
Vậy \(B=2\)