K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : x = 7 ⇒ x + 1 = 8

Thay x + 1 = 8 vào A , ta được :

A = x15 - ( x + 1)x14 + ( x + 1)x13 - ( x + 1)x12 +....- ( x + 1)x2 + ( x + 1)x - 5

A = x15 - x15 - x14 + x14 + x13 - x13 - x12 +....- x3 - x2 + x2 + x - 5

A = x - 5 = 7 - 5 = 2

20 tháng 8 2015

x=7

=>x+1=8

=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5 

=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5

=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5

=x-5

=>A=7-5=2

Vậy A=2 khi x=7

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

a) Ta có: \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\)

\(=x^2-3x^2y-\frac{12}{5}y^2+3x^2y\)

\(=x^2-\frac{12}{5}y^2\)(1)

Thay x=-2 và \(y=-\frac{1}{2}\) vào biểu thức (1), ta được:

\(\left(-2\right)^2-\frac{12}{5}\cdot\left(-\frac{1}{2}\right)^2\)

\(=4-\frac{12}{5}\cdot\frac{1}{4}\)

\(=4-\frac{3}{5}=\frac{17}{5}\)

Vậy: Giá trị của biểu thức \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\) tại x=-2 và \(y=-\frac{1}{2}\)\(\frac{17}{5}\)

b) Ta có: x=7

nên 8=x+1

Thay 8=x+1 vào biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\), ta được:

\(x^{15}-x^{14}\cdot\left(x+1\right)+x^{13}\cdot\left(x+1\right)-x^{12}\cdot\left(x+1\right)+...-x^2\cdot\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+x^{12}-...-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

Vậy: Giá trị của biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\) tại x=7 là 2

28 tháng 5 2017

Đặt \(A=x^{13}-\left(8x^{12}-8x^{11}+8x^{10}-8x^9+.....+8x^2-8x^1\right)+8\)

Đặt \(B=8x^{12}-8x^{11}+8x^{10}-....+8x^2-8x^1\)

\(B=8.\left(x^{12}-x^{11}+x^{10}-x^9+....+x^2-x^1\right)\)

Đặt \(C=x^{12}-x^{11}+x^{10}-x^9+...+x^2-x\)

Suy ra \(C.x=x^{13}-x^{12}+x^{11}-x^{10}+.....+x^3-x^2\)

Nên \(C.x-C=x^{13}-x\)hay \(C.\left(x-1\right)=x^{13}-x\)

Khi đó \(C=\frac{x^{13}-x}{x-1}\)nên\(B=8.\frac{x^{13}-x}{x-1}\)

Từ đó tính tương tự nha , cách làm thì có thể sai những em vẫn cố gắng giúp , ai có cách hay hơn thì giải nhé 

28 tháng 5 2017

chả hiểu gì

27 tháng 1 2017

a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:

\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)

\(=3y+xy-24x+4xy-5xy+24x\)

\(=3y\)

\(=\frac{3}{119}\)

b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(=7-5\)

= 2

27 tháng 1 2017

a) Đặt a = \(\frac{1}{117}\)và b = \(\frac{1}{119}\)

Theo đề ta có:

A = (3 + a) b - 4a ( 5+1-b)-5ab+24a

= 3b + ab - 20a -4a + 4ab - 5ab + 24a

= 3b

= 1.\(\frac{1}{119}\) = \(\frac{3}{119}\)

Vậy A = \(\frac{3}{119}\)

ok

20 tháng 8 2016

Với x=7

Ta có

\(BT=7^{13}-8.7^{12}+8.7^{11}-8.7^{10}+.....-8.7^2+8.7+8\)

\(=7^{13}-\left(7+1\right)7^{12}+\left(7+1\right)7^{11}-\left(7+1\right)7^{10}+......+\left(7+1\right)7+\left(7+1\right)\)

\(=7^{13}-7^{13}-7^{12}+7^{12}+7^{11}-7^{11}-7^{10}+.....+7^2+7+7+1\)

\(=15\)

Vậy tại x=7 thì biểu thức bằng 15

20 tháng 8 2016

Với \(x=7\) thì \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=-x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=...=x+8=15\)

29 tháng 7 2015

ta có: A=7^15- (7+1)7^14+(7+1)7^13-...-(7+1)7^2+(7+1)7-5

A=7^15-7^15-7^14+7^14+7^13-...-7^3-7^2+7^2+7-5

A=7-5=2

10 tháng 9 2017

Čħàō ƃạñ ! Mình xin trả lời câu hỏi của bạn như sau : 

Ta có : 
P = x^15 - 8x^14 + 8x^13 - 8x^12 +... - 8x² + 8x - 5 
= x^15 - 8x^13(x - 1) - 8x^11(x-1) +... - 8x(x - 1) - 5 
= x^15 - 8(x - 1)(x^13 + x^11 +... + x) - 5 (♠) 
Xét : A = x^13 + x^11 + x^9 + x^7+... + x³ + x 
⇔ x².A = x^15 + x^13 + x^11 + x^9 + x^7 +... + x³ 
⇔x².A - A = (x^15 + x^13 + x^11 + x^9 +... + x³) - (x^13 + x^11 + x^9 + x^7+... + x) = x^15 - x 
⇔ A = (x^15 - x)/(x² - 1) 
Thay vào (♠) ta được : 
P = x^15 - 8(x - 1)(x^15 - x)/(x² - 1) - 5 
= x^15 - 8(x^15 - x)/(x + 1) - 5 
Thay x = 7 vào biểu thức trên ta được : P = 7^15 - 8(7^15 - 7)/(7+1) - 5 = 2 
Vậy P = 2 

P/S : Mình đã thử bằng Máy tính cầm tay và kết quả = 2 là chính xác ! 
 Bài của bạn bị nhầm ở chỗ : (x+1)(x¹⁴ –x¹³ +x¹²–... + x² –x+1) = x¹⁵ + 1 chứ không phải = x¹⁵ – 1