Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{15}.3^{16}}{4^{22}.9^8}=\frac{\left(2^3\right)^{15}.3^{16}}{\left(2^2\right)^{22}.\left(3^2\right)^8}=\frac{2^{45}.3^{16}}{2^{44}.3^{16}}=2\)
\(\frac{8^{15}.3^{16}}{4^{22}.9^8}=\frac{\left(2^3\right)^{15}.3^{16}}{\left(2^2\right)^{22}.\left(3^2\right)^8}=\frac{2^{45}.3^{16}}{2^{44}.3^{16}}=2\)
\(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=1944\)
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
\(\left(2^3\right)^n\)\(:2^n\)\(=\left(2^4\right)^{2021}\)
\(2^{3n}\)\(:2^n\)\(=2^{4x2021}\)\(=2^{8084}\)
\(2^{3n-n}\)\(=2^{8084}\)
\(=>3n-n=8084\)
\(2n=8084\)
\(n=8084:2=4042\)
\(=>n=4042\)
a) Ta có \(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(4^2-2^4\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(16-16\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot0\)=0
b) \(\left(7^{1997}-7^{1995}\right):\left(7^{1994}\cdot7\right)\)
=\(\left(7^{1995}\left(7^2-1\right)\right):7^{1995}\)
=\(7^2-1\)=\(49-1\)=\(48\)
c Giống câu a
có dấu phân số ở giữa nha các bạn
\(\frac{8^{15}.3^{16}}{4^{22}.9^8}=\frac{2^{45}.3^{16}}{2^{44}.3^{16}}=2\)