K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Bài này khó đấy

11 tháng 2 2016

giải hộ ý 2 thui

5 tháng 3 2020

a,

x^2=\(\left(999...9\right)^2=\left(10^{2017}-1\right)^2=9999...8000...1\)  (2016 chu so 9 va 0)

xy=\(999...9.888...8=111...0888...89\) (2016 chu so 1 va 8)

ta thay tong cac chu so cua xy, x^2 deu la 2017.9 nen bang nhau

neu bn thac mac lam sao co cong thuc tren thi bn co the chung minh dua vao \(999...9=10^n-1\) (n chu so 9)

5 tháng 3 2020

b, sau luot thu nhat tren bang se xuat hien 3 so la 2,3,2 ( 2 so chan va 1 so le)

Ta co  nhan xet rang 

chan + chan-1 = le

le+chan -1 = chan

tu nhan xet nay ta thay ke tu luot thu 2 bat ke ta chon so nao 2 hoac 3 ( noi tong quat hon la 1 so chan hoac 1 so le ) thi ket qua nhan duoc la ta dc 3 so moi trong do co 2 so chan va 1 so le

Ma de bai cho 27,1985,2017 deu la 3 so le nen KHONG the nhan duoc ket qua nay neu bat dau tu 3 so  2,2,2

Chuc ban hoc tot 

P/s Mik giai thich co cho nao kho hieu mong mn thong cam

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay

12 tháng 8 2018

Bài 1 :

A B C D b a d

* Xét \(\Delta ABD\) có : \(\widehat{A}=90^o\)

a) \(BD^2=AD^2+AB^2\) (đlí Pitago)

\(\Rightarrow d^2=a^2+b^2\)

=> \(d=\sqrt{a^2+b^2}\)

=> \(d=\sqrt{5^2+12^2}=13\left(cm\right)\)

b) \(d^2=a^2+b^2\)

=> \(a^2=d^2-b^2\)

=> \(a=\sqrt{d^2-b^2}\)

=> a = \(\sqrt{\left(\sqrt{10}\right)^2-\left(\sqrt{6}\right)^2}=2\left(dm\right)\)

c) \(d^2=a^2+b^2\)

=> \(b^2=d^2-a^2\)

=> \(b=\sqrt{d^2-a^2}\)

=> b = \(\sqrt{7^2-\left(\sqrt{13}\right)^2}=6\left(m\right)\)

12 tháng 3 2021

A B C H D E F

12 tháng 3 2021

Xét \(\Delta ABC\)có:

DB = DA (giả thiết)

AE = CE (giả thiết)

\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)

\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)

Và \(2DE=BC\)(tính chất)

Mà \(2BF=BC\)(vì \(BF=CF\))

\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)

Xét tứ giác BDEF có: (1) và (2).

\(\Rightarrow BDEF\)là hình bình hành.

Vậy BDEF là hình bình hành.

Bài 1: Cho biểu thức \(P=\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{2x^3}\) a, Rút gọn P b, tìm gí trị của x để P<1 c, Tìm các giá trị nguyên của x để P có giá trị nguyên Bài 2: a, Phân tích đa thức thành nhân tử: \(x^4+6x^3+7x^2-6x+1\) b,Tìm x biết rằng: \(|x-1|+|x-3|=2x-1\) c, Biết xy=41 và \(x^2y+xy^2+x+y=2016\). Hãy tính...
Đọc tiếp

Bài 1: Cho biểu thức

\(P=\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{2x^3}\)

a, Rút gọn P

b, tìm gí trị của x để P<1

c, Tìm các giá trị nguyên của x để P có giá trị nguyên

Bài 2: a, Phân tích đa thức thành nhân tử: \(x^4+6x^3+7x^2-6x+1\)

b,Tìm x biết rằng: \(|x-1|+|x-3|=2x-1\)

c, Biết xy=41 và \(x^2y+xy^2+x+y=2016\). Hãy tính \(A=x^2+y^2-5xy\)

Bài 3: Cho hình chữ nhật ABCD có AD=6cm AB=8cm và hai đường chéo cắt nhau tại O. Qua D kẻ dường thẳng d vuông góc với DB, d cắt BC tại E

a, Chứng minh rằng: tam giác BDE đồng dạng với tam giác DCE

b, Kẻ CH vuông góc với DE tại H. Chứng minh \(DC^2=CH.DB\)

c, Gọi K là giao điểm của OE và HC, chứng minh K là trung điểm của HC và tính tỉ số \(\dfrac{S_{EHC}}{S_{EDB}}\)

Bài 4: a, Tính giá trị nhỏ nhất của biểu thức \(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)

b, Cho hình thoi ABCD có góc A= 60 độ. Trên các cạnh AB, BC lần lượt lấy các điểm M,N sao cho BM+BN bằng độ dài cạnh của hình thoi. Chứng minh rằng đường trung trực của đoạn MN luôn đi qua 1 điểm cố định.

0

Câu 1:

Ta có: \(\left(2x+3\right)^2-4\left(x-3\right)\left(x+3\right)\)

\(=4x^2+12x+9-4\left(x^2-9\right)\)

\(=4x^2+12x+9-4x^2+36\)

\(=12x+45\)

Câu 2:

Ta có: \(\frac{x}{2x-1}+\frac{x-2}{x^2-1}-\frac{5}{2x+2}\)

\(=\frac{2x\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-2\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}-\frac{5\left(x-1\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}\)

\(=\frac{2x\left(x^2-1\right)+2\left(2x^2-5x+2\right)-5\left(2x^2-3x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^3-2x+4x^2-10x+4-10x^2+15x-5}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^3-6x^2+3x-1}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

Câu 3:

Gọi số táo và số lê bạn An mua lần lượt là a,b(điều kiện: 0<a,b<41)

Vì số táo nhiều hơn số lê nên a>b

Theo đề bài, ta có:

\(a^2-b^2=41\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=41\)

\(\Leftrightarrow a-b;a+b\inƯ\left(41\right)\)

\(\Leftrightarrow a-b;a+b\in\left\{1;41;-1;-41\right\}\)

mà a>0 và b>0 và a>b

nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=1\\a+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=41\\a+b=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\1+b+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\41+b+b=1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\2b=40\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\2b=-40\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+20=21\left(nhận\right)\\b=20\left(nhận\right)\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+\left(-20\right)=21\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=21\\b=20\end{matrix}\right.\)

Vậy: Bạn An mua 21 quả táo và 20 quả lê

Câu 4:

Diện tích đám đất đó là:

\(S=800\cdot500=400000\left(m^2\right)=0.4km^2\)

Vậy: Diện tích đám đất tính theo m2 là 400000m2

Diện tích đám đất tính theo km2 là 0.4km2

Câu 5:

Vì diện tích sân là 7035m2 nên ta có phương trình:

\(\left(2x+19\right)\left(2x-19\right)=7035\)

\(\Leftrightarrow4x^2-361=7035\)

\(\Leftrightarrow4x^2=7396\)

\(\Leftrightarrow x^2=1849\)

hay \(x=\sqrt{1849}=43m\)(thỏa mãn)

Chiều dài của sân là:

\(2\cdot43+19=86+19=105\left(m\right)\)

27 tháng 7 2020

bài hai hình như sai đề mà cũng cố làm cho được haizz

28 tháng 9 2018

a, 3x - 3y = 3( x- y )

b, x2 - x =x(x - 1)

c, 3(x - y) - 5x(y - x)

= 3(x - y) + 5x(x - y)

= ( x - y)(3 + 5x)

d, x(y - 1) - y(y - 1)

= (x - y)(y - 1)

e, 10x(x - y)-8y( y - x)

= 10x(x - y) + 8y(x - y)

= (10y + 8x)(x - y)

f, 2x2 +5x3 +xy

= x(2x + 5x2 + y)

g, 14x2y - 21xy2 +28x2y2

= 7xy(2x - 3y + 4xy)

h, x2 - 3x + 2

= x2 - x - 2x + 2

= x(x - 1)- 2(x - 1)

= (x - 2)(x - 1)

i, x2 - x - 6

x2 + 2x - 3x - 6

x(x + 2) - 3(x + 2)

(x + 2)(x - 3)

k, x2 + 5x+6

= x2 - x + 6x + 6

=x(x - 1) + 6(x + 1)

= x(x - 1) - 6(x - 1)

= (x - 6)(x - 1)

l,x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - 3(x - 1)

= (x - 3)(x - 1)

m, x2 + 5x +4

= x2 + x + 4x + 4

= x(x + 1) + 4(x + 1)

= (x + 4)(x + 1)

28 tháng 9 2018

Hướng dẫn:

a, b, c, d, e, f, g: Phương pháp phân phối đưa thừa số chung ra ngoài

h, i, k, l, m : Tách hạng tử rồi nhóm

Bạn làm ra, đoạn nào không hiểu có thể inbox riêng để hoàn thành từng câu

28 tháng 10 2015

a) Áp dụng tính chất đường trung bình của tam giác sẽ chứng minh được ADEF là hbh, MNPQ là hình thoi.

b) và c) chứng minh tương tự