K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Bài 1 :

A B C D b a d

* Xét \(\Delta ABD\) có : \(\widehat{A}=90^o\)

a) \(BD^2=AD^2+AB^2\) (đlí Pitago)

\(\Rightarrow d^2=a^2+b^2\)

=> \(d=\sqrt{a^2+b^2}\)

=> \(d=\sqrt{5^2+12^2}=13\left(cm\right)\)

b) \(d^2=a^2+b^2\)

=> \(a^2=d^2-b^2\)

=> \(a=\sqrt{d^2-b^2}\)

=> a = \(\sqrt{\left(\sqrt{10}\right)^2-\left(\sqrt{6}\right)^2}=2\left(dm\right)\)

c) \(d^2=a^2+b^2\)

=> \(b^2=d^2-a^2\)

=> \(b=\sqrt{d^2-a^2}\)

=> b = \(\sqrt{7^2-\left(\sqrt{13}\right)^2}=6\left(m\right)\)

5 tháng 11 2016

a ) Ta có :

Góc BAD + ADC = 180o

=> \(\frac{1}{2}gocBAD+\frac{1}{2}gocADC=\frac{1}{2}.180^o\)

=> \(gocMAD+gocMDA=90^o\)

=> Xét \(\Delta MAD\)có \(gocMAD+gocMDA=90^o\Rightarrow gocAMD=90^o\)

=> Sử dụng góc kề bù ta suy ra \(gocAMD=gocAMF=gocDME=90^o\)

Xét \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(gocDAM=gocFAM\)( AE là phân giác góc A )

Chung cạnh AM

\(gocAMD=gocAMF\left(cmt\right)\)

=> \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

=> M là trung điểm DF

Tớ chỉ làm được tới đây

10 tháng 12 2016

Có bao giờ bạn tự hỏi mình đánh làm cái thế này

3 tháng 11 2016

A B C D E F M N K

a) Ta có :

Góc BAD + Góc ADC = 180o

\(\Rightarrow\frac{1}{2}\widehat{BAD}+\frac{1}{2}\widehat{ADC}=\frac{1}{2}.180^o\)

\(\Rightarrow\widehat{MAD}+\widehat{MDA}=90^o\)

Xét \(\Delta MAD\)có \(\widehat{MAD}+\widehat{MDA}=90^o\Rightarrow\widehat{AMD}=90^o\)

\(\Rightarrow\widehat{AMD}=\widehat{AMF}=\widehat{DME}=90^o\)( SỬ dụng góc kề bù để suy ra )

Xét \(\Delta AMD\)và \(\Delta AMF:\)

\(\widehat{DAM}=\widehat{FAM}\)( AE là phân giác \(\widehat{A}\))

Chung cạnh AM

\(\widehat{AMD}=\widehat{AMF}\)( cmt )

\(\Rightarrow\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(\Rightarrow M\)là trung điểm DF

Xét \(\Delta AFM\)và \(\Delta EDM\), có :

\(\widehat{AFM}=\widehat{EDF}\)( 2 góc so le trong vì AF//DE )

\(FM=DM\)( M là trung điểm DF )

\(\widehat{FMA}=\widehat{DME}=90^o\)

\(\Rightarrow\Delta AMF=\Delta EMD\left(g.c.g\right)\)

\(\Rightarrow\)M là trung điểm AE

Tứ giác ADEF có hai đường chép vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

b) Từ N kẻ đường thằng song song với AB ( CD ); cắt BC tại K.

Có \(\widehat{FBN}=\widehat{BNK}\)( So le trong )

Mà \(\widehat{FBN}=\widehat{KBN}\)( BN là phân giác góc B )

\(\Rightarrow\widehat{BNK}=\widehat{KBN}\) nên tam giác KBN cân tại K; hay BK = NK

Tương tự chứng minh tam giác CNK cân tại K; hay NK = KC

\(\Rightarrow BK=KC;\)hay K là trung điểm BC

\(AB\text{//}CD\Rightarrow FB\text{//}EC\)

\(\Rightarrow FBCE\)là hình thang

Xét hình thang FBCE có :

\(NK\text{//}FB\text{//}FC\)

\(K\)là trung điểm BC

\(\Rightarrow NK\)là đường trung bình hình thang, hay N là trung điểm FE, tức N nằm trên EF

Vậy ...

c) \(AB=\frac{3}{2}AD\) nên đặt \(AD=2\alpha;AB=3\alpha\)

Ở phần a đã chứng minh \(\Delta AMD=\Delta AMF\Rightarrow AD=AF=2\alpha\)(2 cạnh tương ứng )

Xét tam giác EAF :  N là trung điểm FE ; M là trung điểm AE nên MN là đường trung bình

\(\Rightarrow MN=\frac{1}{2}AF=\frac{1}{2}\left(2\alpha\right)=\alpha\)

Vì góc A = 120o nên \(\widehat{FAM}=\frac{1}{2}.\widehat{A}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MFA}=90^o-\widehat{FAM}=30^o\)

Xét tam giác AMF vuông tại M có 2 góc nhọn là 60o và 30o \(\Rightarrow AM=\frac{1}{2}FA=\frac{1}{2}\left(2\alpha\right)=\alpha\)(Mình chứng minh bên dưới 

Mà \(AM=ME\Rightarrow ME=\alpha\)

Do ABCD là hình bình hành nên góc BCD cũng bằng góc A và bằng 120o

\(\Rightarrow\widehat{BCN}=\frac{1}{2}\widehat{C}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{CBN}=90^o-\widehat{BCN}=30^o\)

Xét tam giác vuông BNC vuông tại N có 2 góc nhọn là 30o và 60o nên \(NC=\frac{1}{2}BC=\frac{1}{2}AD=\frac{1}{2}\left(2\alpha\right)=\alpha\)

AFED là hình thoi nên \(FA=DE=2\alpha\)

Lại có \(CD=AB=3\alpha\)

\(\Rightarrow CD-DE=EC=3\alpha-2\alpha=\alpha\)

Tứ giác \(MNCE\)có 4 cạnh bằng nhau và bằng \(\alpha\) nên là hình thoi.

Vậy ...

3 tháng 11 2016

À quên :) Cách chứng minh một tam giác vuông có một góc 60 độ / 30 độ thì cạnh góc vuông nhỏ hơn sẽ bằng nửa cạnh huyền.

S P Q J 60 30

Xét tam giác SQP vuông tại Q và \(\widehat{P}=60^o;\widehat{S}=30^o\)

Trên tia đối của QP, lấy J sao cho JQ=QP.

Xét \(\Delta SJP\)có \(SQ\)vừa là đường cao, vừa là trung tuyến nên là tam giác cân, lại có  \(\widehat{S}=60^o\)nên là tam giác đều.

\(\Rightarrow JP=SQ\)

\(\Rightarrow2.QP=SQ\)

\(\Rightarrow SQ=\frac{1}{2}SQ\)

Vậy ...

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

19 tháng 9 2018

chân núi, chân đồi, chân bàn, chân ghế , chân trời ,....

19 tháng 9 2018

sorry mk tl nhầm câu nha ^^

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà