K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99

A=98.99.100

A=970200 nha bạn

1 tháng 8 2016

a)

\(A=1.2.3+2.3.\left(4-1\right)+......+98.99.\left(100-97\right)\)

\(A=1.2.3+2.3.4-1.2.3+......+98.99.100-97.98.99\)

\(A=98.99.100=970200\)

1 tháng 8 2016

\(B=1\left(2-1\right)+2\left(3-1\right)+....+98\left(99-1\right)\)

\(B=1.2+2.3+...+98.99-\left(1+2+...+98\right)\)

\(B=\frac{1}{3}\left(1.2.3+2.3.3+....+98.99.3\right)-4851\)

Áp dụng A Ta có

\(B=\frac{1}{3}.907200-4851=297550\)

8 tháng 10 2014

Tại vì các số hạng đều nhân thêm 3

29 tháng 7 2016

Đặt tổng là S

\(\Rightarrow\frac{S}{2}=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{49.50}-\frac{1}{50.51}\right)\)

\(\Rightarrow\frac{S}{2}=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)

\(\Rightarrow S=\frac{1274}{1275}\)

29 tháng 7 2016

bn có chép sao đề bài ko vậy
 

20 tháng 9 2015

B = 49.(49 + 1).(2 . 49 + 1) / 6 = 40425

C = 4.(12 + 22 + … + 24) = 4.24.(24 + 1)(2.24 + 1) / 6 = 19600

16 tháng 4 2019

đề hơi sai, mk sửa lại nhé

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(\Leftrightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(\Leftrightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(\Leftrightarrow2A=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Leftrightarrow2A=\frac{4950}{9900}-\frac{1}{9900}\)

\(\Leftrightarrow2A=\frac{4949}{9900}\)

\(\Leftrightarrow A=\frac{4949}{9900}\div2\)

\(\Leftrightarrow A=\frac{9898}{9900}=\frac{4949}{4950}\)

16 tháng 4 2019

\(A=2+22+...+222222222...2222\left(\text{50 chữ số 2}\right)\)

\(\Leftrightarrow A=2\left(1+11+...+111111111...1111\right)\)

\(\Leftrightarrow A=\frac{2}{9}\left(9+99+...+9999999999...99\right)\)

\(\Leftrightarrow A=\frac{2}{9}\left[\left(10-1\right)+\left(10^2-1\right)+...+\left(10^{50}-1\right)\right]\)

\(\Leftrightarrow A=\frac{2}{9}\left[\left(10+10^2+...+10^{50}\right)-50\right]\)

Đặt \(B=\left[\left(10+10^2+...+10^{50}\right)\right]\)

\(\Leftrightarrow10B=\left[\left(10^2+10^3+...+10^{51}\right)\right]\)

\(\Leftrightarrow10B-B=\left[\left(10^2+10^3+...+10^{51}\right)\right]-10-10^2-...-10^{50}\)

\(\Leftrightarrow10B-B=10^{51}-10\)

\(\Rightarrow A=\frac{2}{9}\left(10^{51}-10-50\right)\)

\(\Rightarrow A=\frac{2}{9}\left(10^{51}-60\right)\)

20 tháng 9 2015

​trình bày dài dòng=>ko làm