\(\frac{1}{1.2.3}+\frac{1}{2.3.3}+...+\frac{1}{49.50.51}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Đặt tổng là S

\(\Rightarrow\frac{S}{2}=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{49.50}-\frac{1}{50.51}\right)\)

\(\Rightarrow\frac{S}{2}=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)

\(\Rightarrow S=\frac{1274}{1275}\)

29 tháng 7 2016

bn có chép sao đề bài ko vậy
 

25 tháng 4 2016

637/3825

25 tháng 4 2016

0 nhớ chắc chắn nhưng xem có bài nào giạng đấy 0 và giải hộ

16 tháng 8 2016

đề câu a sai ở tử của số hạng thứ 2

16 tháng 8 2016

câu a phải là như z ms làm được bn ơi

A = 31.3+33.5+...+319.2031.3+13.5+...+319.20

 

16 tháng 8 2016

\(B=\frac{3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2550}\right)\)

\(=\frac{3}{2}\cdot\frac{637}{1275}\)

\(=\frac{637}{850}\)

16 tháng 8 2016

mk trả lời câu này rồi đó

8 tháng 7 2016

                            Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                  \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                               \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                            \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                           \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                         Ủng hộ mk nha!!

26 tháng 3 2017

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(A=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

chỗ nãy rồi bạn tự tính tiếp

KQ la \(\frac{4949}{19800}\)ak cac ban

24 tháng 3 2018

Có \(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

      \(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

   ...

      \(\frac{1}{17.18.19}=\frac{1}{2}\left(\frac{1}{17.18}-\frac{1}{18.19}\right)\)

=>\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{17.18.19}\)=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{17.18}-\frac{1}{18.19}\right)\)

                                                                           \(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{18.19}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{18.19}< \frac{1}{4}\)