K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

A = 4+22+23+...+299

2A = 23+23+24+...+2100

2A - A = 23 +(2100 - 23)

=> A = 2100

Có A.214 = 2n

=> 2100.214 = 2n

=> 2114 = 2n

=> n = 114

18 tháng 12 2016

114 nha

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$

$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$

$\Rightarrow A+5^2A=5^{52}-1$

$\Rightarrow 26A=5^{52}-1$

$\Rightarrow 5^{52}-1+1=5^n$

$\Rightarrow 5^{52}=5^n$

$\Rightarrow n=52$

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

DD
12 tháng 10 2021

\(A=5+3^2+3^3+...+3^{2018}\)

\(3A=15+3^3+3^4+...+3^{2019}\)

\(3A-A=\left(15+3^3+3^4+...+3^{2019}\right)-\left(5+3^2+3^3+...+3^{2018}\right)\)

\(2A=1+3^{2019}\)

\(2A-1=3^{2019}\)

Suy ra \(n=2019\).

28 tháng 9 2020

Ta có:

\(A=3+3^2+3^3+...+3^{100}\)

=> \(3A=3^2+3^3+3^4+...+3^{101}\)

=> \(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

<=> \(2A=3^{101}-3\)

Thay vào PT ta được: \(2A+3=3^n\)

\(\Rightarrow3^n=3^{101}-3+3=3^{101}\)

\(\Rightarrow n=101\)

28 tháng 9 2020

Ta có A = 3 + 32 + 33 + ... + 3100

=> 3A = 32 + 33 + 34 + .... + 3101

Khi đó 3A - A = (32 + 33 + 34 + .... + 3101) - (3 + 32 + 33 + ... + 3100)

            => 2A = 3101 - 3

Lại có 2A + 3 = 3n

=> 3101 - 3 + 3 = 3n

=> 3101 = 3n

=> n = 101

Vậy n = 101