Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem yêu cầu là chứng minh chia hết cho bao nhiêu .
Rồi xong rút số đó ra ngoài . Vậy là chứng minh xong
- Số có dạng \(a^{4k+2}\)thì tận cùng cũng chính là tận cùng của \(a^2\)
Do đó ta coi \(\overline{X}=2^2+3^2+4^2+...+104^2\)là một số có tận cùng giống tận cùng của \(X.\)
- Bài toán phụ : chứng minh \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) với \(n>1\)bằng phương pháp quy nạp.
Coi tồn tại một số \(n\)thỏa mãn đẳng thức trên.
\(\Rightarrow1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta cần chứng minh đẳng thức cũng thỏa mãn với \(n+1.\)
Có : \(1^2+2^2+3^2+...+n^2+\left(n+1\right)^2\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\left(n+1\right)^2\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)+6\left(n+1\right)^2}{6}\)
\(=\frac{\left(n^2+n\right)\left(2n+1\right)+6\left(n^2+2n+1\right)^2}{6}\)
\(=\frac{2n^3+3n^2+n+6n^2+12n+6}{6}\)
\(=\frac{2n^3+9n^2+13n+6}{6}\)
\(=\frac{\left(2n^3+2n^2\right)+\left(7n^2+7n\right)+\left(6n+6\right)}{6}\)
\(=\frac{2n^2\left(n+1\right)+7n\left(n+1\right)+6\left(n+1\right)}{6}\)
\(=\frac{\left(n+1\right)\left(2n^2+7n+6\right)}{6}\)
\(=\frac{\left(n+1\right)\left[\left(2n^2+4n\right)+\left(3n+6\right)\right]}{6}\)
\(=\frac{\left(n+1\right)\left[2n\left(n+2\right)+3\left(n+2\right)\right]}{6}\)
\(=\frac{\left(n+1\right)\left(n+2\right)\left(2n+3\right)}{6}\)
\(=\frac{\left(n+1\right)\left[\left(n+1\right)+1\right]\left[2\left(n+1\right)+1\right]}{6}\)
\(\Rightarrow\)Đẳng thức thỏa mãn với mọi \(n\in N\)
- Quay trở lại bài toán chính, có :
\(\overline{X}=2^2+3^2+4^2+...+104^2\)
\(=\left(1^2+2^2+3^2+4^2+...+104^2\right)-1^2\)
\(=\frac{104.\left(104+1\right)\left(2.104+1\right)}{6}-1\)
\(=\left(...0\right)-1\)
\(=\left(...9\right)\)
\(\overline{X}\)có tận cùng là 9 nên \(X\)có tận cùng là 9.
Vậy...
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0.
Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9 Vậy A ko phải là số chính phương.
3A=3+3^2+...+3^31
=> 2A= 3A-A
=> 2A= 3^31-1
=> A= (3^31-1):2
Xét 3^31 = (3^4)^7x3^3=87^7x27=(...1)x27=(....7)
=> A= [ (...7) -1 ] :2= (...6):2=(...3)
Vì số chính phương không tận cùng là 3 => A không phải số chính phương
Ta có:A = 7+72+ 73+ ...+72016
= ( 7+72 ) + (73+74) + ..... +(72015+72016)
= 7.8 + 73.8 + .... + 72015.8
= (7 + 73 + ...+ 72015).8 chia hết cho 8
Ta có:A = 7+72+ 73+ ...+72016
= ( 7+72 ) + (73+74) + ..... +(72015+72016)
= 7.8 + 73.8 + .... + 72015.8
= (7 + 73 + ...+ 72015).8 chia hết cho 8
+ \(2^{31}\cdot5=2^{30}\cdot2\cdot5\)
\(=2^{30}\cdot10\)tận cùng bằng chữ số 0.
+ Tương tự \(2^{2018}\cdot5^2\)tận cùng bằng chữ số 0
+ Các số có tận cùng là 0 , 1 , 5 , 6 nâng lên lũy thừa bậc mấy cũng tận cùng là 0 , 1 , 5 , 6.
\(2^{2018}=2^{2016}\cdot4\)\(=\left(2^4\right)^{504}\cdot4\)
\(=16^{504}\cdot4\)\(=\left(...6\right)\cdot4=\left(...4\right)\)( \(16^{504}\)tận cùng là 6 )
Vậy \(2^{2018}\)tận cùng là 4