K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

\(A=4+2^2+2^3+2^4+...+2^{20}\)

ta có : \(S=2^2+2^3+...+2^{20}\)

\(\Rightarrow2S=2^3+2^4+...+2^{21}\)

\(\Rightarrow2S-S=2^{21}-2^2=2^{21}-4\)

\(\Rightarrow A=4+S=4+2^{21}-4=2^{21}\)

\(\Rightarrow\) A là lũy thừa của 2

( mik cũng không chắc nữa )

5 tháng 9 2015

a) A = 22007-1 => A + 1  = 22007

b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006

c) C = 4 + 22 + 23+...+22005 = 2+ 2+ ...+ 22005 + 4

2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006

1 tháng 10 2017

A=4+2^2+2 ^3+...+2 ^20

Đặt B=2^ 2+2 ^3+...+2^ 20

=>2B=2 ^3+2^ 4+...+2 ^21

=>2B-B=2 ^21 -2 ^2=2^ 21 -4

=>A=4+B=4+2 ^21 -4=2^ 21

=>A là lũy thừa của 2(ĐPCM)

1 tháng 10 2017

bn xem trong câu hỏi tương tự nha =))

22 tháng 10 2019

Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath

30 tháng 9 2015

a) B = 3 + 32 + ... + 32005

3B = 32 + 33 + ... + 32006

3B - B = 32006 - 3 

2B = 32006 - 3

Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa

6 tháng 9 2016

2^21

giúp tớ nha 

tớ mới bị trừ 530 điểm

cảm ơn trước

6 tháng 9 2016

A = \(4+2^2+2^3+2^4+...+2^{20}\)

=> 2A = \(2^3+2^4+..+2^{21}\)

=> 2A - A = \(2^{21}-4\)

=> A = 4+ A = 4+ \(2^{21}\)-4 = 221

Vậy ....

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.

30 tháng 11 2017

A=4+2^2+2^3+....+2^20 
2A=8+2^3+2^3+...+2^21 
>>A+2A-A=(8+2^3+2^4+...+2^21) 
- (4+2^2+2^3+....+2^20) 
>>A=2^21+8-(2^2+4)=2^21 
>>A là 1 lũy thừa của 2

7 tháng 11 2021

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=4+2^2+2^3+...+2^{2006}\)

\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)

\(A=2^{2006}\)

Vậy A là 1 luỹ thừa của cơ số 2

7 tháng 11 2021

\(B=5+5^2+...+5^{2021}\)

\(5B=5^2+5^3+...+5^{2022}\)

\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)

\(4B=5^{2022}-5\)

\(B=\frac{5^{2022}-5}{4}\)

\(B+8=\frac{5^{2022}-5}{4}+8\)

\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)

\(B+8=\frac{5^{2022}-5+32}{4}\)

\(B+8=\frac{5^{2022}+27}{4}\)

=> B + 8 k thể là số b/ph của 1 số tn