K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

22013 + 22014 + 22015 = 22011(22 + 23 + 24)=22011.(4+8+16)=28.22011

Vì 28 chia hết cho 28 nên 28.22011 cũng chia hết cho 28 (Điều phải chứng minh)!

16 tháng 12 2015

A=22011+22012+22013+22014+22015+22016

A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25

A=22011.(1+2+22+23+24+25)

A=22011.(1+2+4+8+16+32)

A=22011.63

A=22011.3.21    chia hết cho 21

26 tháng 12 2016

20115524+2105+26589+2356/8968-5689

17 tháng 12 2018

Mik sắp làm xong thì bấm nhầm làm mất bài, bây h làm lại thì hơi mất thời gian. Mik hướng dẫn bn làm nhé.

Chứng minh nó chia hết cho 3; cho 7 rồi CM đc nó chia hết cho 21.

Đối vs A chia hết cho 3, bn ghép hai số lại vs nhau và Cm đc. Còn đối vs A chia hết cho 7, bn ghép 3 số lại làm 1 nhóm là Cm đc. Nếu ko biết thì cố nghĩ đi nhé. Chúc bạn học tốt.

15 tháng 11 2017

a)A=20130+20131+20132+...+20132011

2013A=2013+20132+20133+...+20132012

2013A-A=2012A=20132012-20130

A=20132012-1/2012

k tao đi tao làm phần b cho

25 tháng 3 2018

b này : Chép cái đề bài vào

=>(2013+20131)+(20132+20133)+.....+(20132010+20132011)

=>2013.(1+2013)+20132.(1+2013)+.....+20132010.(1+2013)

=>2013.2014+20132.2014+......+20132010+.2014

=>2014.(2013+20132+.....+20132010) chia hết cho 2014

Vậy A chia hết cho 2014

3 tháng 12 2018

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

14 tháng 8 2017

a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31

b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8

                                        =8x(1+7^2+...7^100)=>chia hết cho 8

c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28

14 tháng 8 2017

a/ 52016+52015+52014=52014(52+5+1)=31.52014  => Chia hết cho 31

b/ 1+7+72+73+...+7101  Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:

(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)

= (1+7)(1+72+...+7100)=8.(1+72+...+7100)  => Chia hết cho 8

c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28

=> Chia hết cho  28

20 tháng 11 2019

\(A=75\left(4^{2013}+4^{2012}+...+4^2+4+1\right)+25.\)

Đặt \(4^{2013}+4^{2012}+...+4^2+4=B\)

\(\Rightarrow4B=4^{2014}+4^{2013}+...+4^3+4^2\Rightarrow3B=4B-B=4^{2014}-4\Rightarrow B=\frac{4^{2014}-4}{3}\)

\(\Rightarrow A=75\left(B+1\right)+25=75\left(\frac{4^{2014}-4}{3}+1\right)+25\)

\(A=25\left(4^{2014}-4\right)+75+25=25\left(4^{2014}-4\right)+100\)

\(A=25\left(4^{2014}-4+4\right)=25.4^{2014}\) chia hết cho \(4^{2014}\)

27 tháng 11 2016

A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)

A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)

A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)

A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)

A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)

A=\(2^{2011}\cdot7+2^{2014}\cdot7\)

A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)

Từ (1) và (2)\(\Rightarrow A⋮3,7\)

Mà ƯCLN(3,7)=1

\(\Rightarrow A⋮3\cdot7=21\)

 

6 tháng 1 2016

A= 2015+20152+20153+....+20152013+20152014+20152015 

A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)

A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)

A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016

A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)

=> A chia hết cho 2016

=> đpcm : điều phải chứng minh


 

7 tháng 1 2016

BẠN ƠI SAI RÙI! CÓ 2015 SỐ HẠNG THÌ PHẢI LẺ 1 SỐ CHỨ