Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2+2^2+2^3+2^4+...+2^{50}\)
\(A=2A-A=2^{50}-1\)
Ta có \(2^{50}=2.2^{49}=2.\left(2^7\right)^7=2.128^7\)
\(5^{19}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow125^7< 128^7< 2.128^7\Rightarrow5^{19}< 2^{50}\Rightarrow5^{19}-1< 2^{50}-1=A\)
a) S= 1+2+22+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+23+...+29)
S=210-1
5.28=2.2+1.28=1+22.28=1+210
=>S=5.28
b) A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
A=2101-1
=> A<2101
Ta thấy:
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
................
\(\frac{1}{19^2}<\frac{1}{18.19}\)
Cộng vế với vế ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{19^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{18.19}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}\)\(=1-\frac{1}{19}=\frac{18}{19}>\frac{18}{40}=\frac{9}{20}\)
Kết luận: ....>.....
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
a. {[(2:x + 14) : 22 - 3] : 2} - 1 = 0
[(2:x + 14) : 4 - 3] : 2 = 1
(2:x + 14) : 4 - 3 = 2
(2:x + 14) : 4 = 5
2:x + 14 = 20
2:x = 6
x = 2:6
x = 1/3
b. 10 - {[(x:3 + 17) : 10 + 3.16] : 10} = 5
[(x:3 + 17) : 10 + 48] : 10 = 5
(x:3 + 17) : 10 + 48 = 50
(x:3 + 17) : 10 = 2
x:3 + 17 = 20
x:3 = 3
x = 9
2.
a,. 1619 = (24)19 = 276
825 = (23)25 = 275
Vì 276 > 275 nên 1619 > 825
b. 2711 = (33)11 = 333
818 = (34)8 = 332
Vì 333 > 332 nên 2711 > 818
DỂ THẾ
\(2A=2+2^2+2^3+....+2^{50}\Rightarrow2A-A=A=2^{50}-1\)
ta so sánh \(5^{19}\text{ và }2^{50};2^{50}=\left(2^5\right)^{10}=32^{10}>25^{10}=5^{20}>5^{19}\text{ nên: }A>5^{19}-1\)