K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

b) A=(2010-1)(2010+10)=\(2010^2-1< 2010^2=B\)

vậy A<B

2 tháng 12 2019

a/ \(2A=2+2^2+2^3+2^4+...+2^{2011}\)

\(A=2A-A=2^{2011}-2^0=2^{2011}-1=B\)

b/ \(A=2009.2011=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B=2010^2\)

c/ 

\(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

\(\Rightarrow11^{24}=121^{12}< 125^{12}=5^{36}\)

d/ 

\(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}>5^{20}=625^5\)

e/

\(3^{2n}=\left(3^2\right)^n=9^n\)

\(2^{3n}=\left(2^3\right)^n=8^n< 9^n=3^{2n}\)

f/

\(6.5^{22}>5.5^{22}=5^{23}\)

g/

\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

\(\Rightarrow333^{444}>444^{333}\)

24 tháng 2 2017

Bài 1:

a) Ta có: 536=(53)12=12512

                 1124=(112)12=12112

Vì 12512>12112

=>536>1124

b) Ta có: 6255=(54)5=520

             1257=(53)7=521

Vì 520<521

=>6255<1257

c) Ta có: 32n=(32)n=9n

                23n=(23)n=8n

Vì 9n>8n

=>32n>23n

d) Ta có: 6.522=(1+5).522=523+522>523 

e) S=1+2+22+23+...+22005

   2S=2+22+23+24+...+22006

=>2S-S=(2+22+23+24+...+22006) - (1+2+22+23+...+22005)

=>S=22006-1<22014<5.22014

Cậu cho tớ 3 tớ sẽ làm 2 bài còn lại cho cậu

24 tháng 2 2017

Nhớ cho tớ 3 "đúng" nhé

9 tháng 1 2018

b) A = 2009 . 2011 

    A = 2009 . ( 2010 + 1 )

    A = 2009 . 2010 + 2009

B = 20102

B = 2010 . 2010

B = ( 2009 + 1 ) . 2010

B = 2009 . 2010 + 2010

Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010

Vậy A < B

d tương tự

c) 52n và 25n

52n = 25n

25n = 32n

Mà 25< 32n

Vậy 52n < 25n

a) A = 2+ 2+ 2+ 2+ ............ + 22010

2A = 2+ 2+ 2+ 24 + .............. + 22011

2A - A = ( 2+ 2+ 2+ 24 + ............... + 22011 ) - ( 2+ 2+ 22 + 2+ ................ + 22010 )

A = 22011 - 1

Mà 22011 - 1 = 22011 - 1

Vậy A = B

9 tháng 1 2018

b) Ta có A=2009.2011=2009(2010+1)=2009.2010+2009

              B=20102=2010.2010=(2009+1)2010=2009.2010+2010

Mà 2009.2010+2009<2009.2010+2010

Nên A<B

28 tháng 5 2016

a,s1=499500                                                         b,s2=1011010                                                               c,s3=250901

d,s4=7725                                                            e,s5=6035                                                                     f,s6=715

7 tháng 10 2017
a) < b) > d) < e) > f) >
3 tháng 12 2016

Ở đây, mik chỉ hướng dẫn , bạn tự trình bày bài nhé:

B1: số ta cần tìm là một số nhỏ nhất vừa chia hết cho 8 và cho 10.

 Suy ra số đó là BCNN(8,10) = 80

Vậy sau ít nhất 80 ngày thì hai bạn lại đến thư viện 1 lần.

3 tháng 12 2016

Câu 1 :

Gọi a là số ngày ít nhất để Lan và Minh cùng đến thư viện 

Theo bài ra ta có :

a chia hết cho 8;a chia hết cho 10

=> a thuộc BCNN( 10,12)

BCNN(8,10)= 23.5=40

=> a=40

Vậy sau 40 ngày thì 2 bạn cùng đến thư viện

Câu 2 :

A= 20 + 21+ 22 + 23+ ... + 22010

=> 2A=21+ 22 + 23+ ... + 22011

=> 2A-A=(21+ 22 + 23+ ... + 22011)-(20 + 21+ 22 + 23+ ... + 22010)

=> A= 22011-20

Mà B=22011-20

=> A=B

a, \(A=2^0+2^1+2^2+...+2^{2010}\)

\(\Leftrightarrow2A=2^1+2^2+2^3+...+2^{2011}\)

\(\Leftrightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1\)

\(\Rightarrow A=B\)

b, \(B=2010^2=2010\times2010\)

Ta có : \(2009\times2011=2009\times\left(2010+1\right)=2009\times2010+2009\)

            \(2010\times2010=2010\times\left(2009+1\right)\)\(=2010\times2009+2010\)

 \(2009< 2010\)

\(\Rightarrow A< B\)

c , Ta có : \(A=333^{444}=\left(333^4\right)^{111}\)

                \(B=444^{333}=\left(444^3\right)^{111}\)

Cả A và B đều có cùng số mũ 111 nên ta so sánh \(333^4\)và \(444^3\)

Ta thấy : \(333^4=\left(3\times111\right)^4=3^4\times111^4=81\times111^4\)

              \(444^3=\left(4\times111\right)^3=4^3\times111^3=64\times111^3\)

Vì \(81\times111^4>64\times111^3\)

\(\Rightarrow A>B\)

d , Ta có : \(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)

                 \(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

\(\Rightarrow B>A\)

e , Ta có : \(A=3^{450}=\left(3^9\right)^{50}=19683^{50}\)

                \(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)

\(\Rightarrow A>B\) 

_Chúc bạn học tốt_

1 tháng 6 2018

a) Ta có :

A = 20  + 2 + 22 + ... + 22010

2A = 2 + 22 + 23 + ... + 22011

2A - A = (  2 + 22 + 23 + ... + 22011 ) - ( 20  + 2 + 22 + ... + 22010 )

A = 22011 - 20 = 22011 - 1 = B

b) A = 2009 . 2011 = ( 2010 - 1 ) . 2011 = 2010 . 2011 - 2011

B = 20102 = 2010 . 2010 = ( 2011 - 1 ) . 2010 = 2011 . 2010 - 2010

Ta thấy 2010 . 2011 - 2011 < 2011 . 2010 - 2010 nên A < B

c) Ta có : 333444 = ( 3334 )111 ; 444333 = ( 4443 )111

Lại có : 3334 = ( 3 . 111 )4 = 34 . 1114 = 81 . 1114 ; 4443 = ( 4 . 111 )3 = 43 . 1113 = 64 . 1113

Ta thấy 81 . 1114 > 64 . 1113 nên A > B

d) A = 1030 = ( 103 )10 = 100010 ; B = 2100 = ( 210 )10  = 102410

vì 100010 < 102410 nên A < B

e) A = 3450 = ( 33 )150 = 27150

B = 5300 = ( 52 )150 = 25150

vì 27150 > 25150 nên A > B

31 tháng 8 2021

a) A = 20 + 21 + 22 + 23 + ... + 22010

=> 2A = 21 + 22 + 23 + ... + 22010 + 22011

=> 2A - A = (21 + 22 + 23 + ... + 22010 + 22011) - (20 + 21 + 22 + 23 + ... + 22010)

A = 21 + 22 + 23 + ... + 22010 + 22011 - 20 - 21 - 22 - 23 - ... - 22010

= 22011 - 1 = B

Vậy A = B

b) A = 2009 . 2011 = 2009 . (2010 + 1) = 2009 . 2010 + 2009

B = 20102 = 2010 . 2010 = (2009 + 1) . 2010 = 2009 . 2010 + 2010

Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010 nên A < B

c) A = 1030 = (103)10 = 100010

B = 2100 = (210)10 = 102410

Mà 102410 > 100010 A > B

d) A = 333444 = (3334)111 = [(3.111)4]111 = (34.1114)111 = (81 . 1114)111

B = 444333 = (4443)111 = [(4.111)3]111 = (43.1113)111 = (64 . 1113)111

Mà (81 . 1114)111 > (64 . 1113)111 nên A > B

e) A = 3450 = (33)150 = 27150

B = 5300 = (52)150 = 25150

Mà 27150 > 25150 nên A > B