K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2022

Xét p = 2 ta có p +2 = 4; p+4 = 6 đều chia hết cho 2 =>p + 2; p + 4 là hợp số.

Vậy một số nguyên tố cần tìm là 2.

Còn nếu để xét tất cả các số nguyên tố thõa mãn thì không thể. p +2; p +4 có ít nhất một số chia hết cho 3. Ta chỉ cần tìm số nguyên tố p để một trong hai số chia hết cho 5 chẳng hạn, ví dụ 23;25;27 hoặc 61;63;65. Có rất nhiều số như vậy và nó chẳng theo quy luật nào cả

 

 

30 tháng 10 2021

Bài 1: p = 4

Bài 2: p =3

Bài 3. p = 2

Bài 4: ....... tự giải đi

Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây

26 tháng 2 2017

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

26 tháng 2 2017

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

16 tháng 2 2015

p+2 = p-1+3 ; p+4=p+1+3

Xét 3 số liên tiếp p-1 ; p ; p+1 có 1 và chỉ 1 số chia hết cho 3.

nếu p-1 ; p+1 chia hết cho 3 thì p+2 ; p+4 chia hết cho 3. điều này vô lý vì chúng là số nguyên tố. Vậy chỉ có p chia hết cho 3, mà p nguyên tố nên p = 3

30 tháng 11 2019

a)+) Với p = 2 => p + 10 = 2 + 10 = 12

Vì 12 là hợp số 

=> p + 10 là hợp số

=> p = 2  (loại)  (1)

+) Với p = 3 => p + 10 = 3 + 10 = 13 và  p  + 14 =3 + 14 = 17 

Vì 13 và 17 đều là các số nguyên tố

=> p = 3  ( thỏa mãn )  (2)

Với p>3 => p có dạng : 3k +1 ; 3k+2  (k thuộc N)

+) Với p = 3k + 1 => p + 14 = 3k+15 chia hết cho 3

Mà p + 14 là hợp số => 3k + 15 là hợp số 

=> p =3k +1  (loại)  (3)

+) Với p =3k + 2 => p+ 10 =3k +12 chia hết cho 3

Mà p + 10 >3 => 3k+12 >3 => 3k+12 là hợp số

=> p=3k +2  (loại)

Từ (1),(2),(3),(4)

=>p=3

Vậy p=3

30 tháng 11 2019

Dòng thứ 8 là k thuộc N*

Bài 1: 

Trường hợp 1: p=2 thì p+2=4(loại)

Trường hợp 2: p=3 thì p+2=5; p+6=9(loại)

Trường hợp 3: p=5

=>p+2=5; p+6=11; p+8=13(nhận)

30 tháng 8 2021

BAI NAY DE NHU  AN BANH DO BAY DAO HOC LOP MAY

bài 6 :1) cho p và p + 8 đều là số nguyên tố (p>3). hỏi p + 100 là số nguyên tố hay hợp số ?2) trog một phép chia,số bị chia bằng 63,số dư bằng 8. tìm số chia và thương 3) cho A = 5 +52 + 53 +...+52016. Tìm x để 4A + 5 = 5x.4) chúng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.5) chứng tỏ rằng tổng A = 405n + 2405 + m26) Cho S = 1 + 3 + 32 + 33 + ...+ 398. Chứng minh S không...
Đọc tiếp

bài 6 :

1) cho p và p + 8 đều là số nguyên tố (p>3). hỏi p + 100 là số nguyên tố hay hợp số ?

2) trog một phép chia,số bị chia bằng 63,số dư bằng 8. tìm số chia và thương 

3) cho A = 5 +52 + 53 +...+52016. Tìm x để 4A + 5 = 5x.

4) chúng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

5) chứng tỏ rằng tổng A = 405n + 2405 + m2

6) Cho S = 1 + 3 + 3+ 3+ ...+ 398. Chứng minh S không phải là số chính phương.

7) So sánh hai hiệu : 20182019 - 20182018 và 20182018 - 20182017.

8) Khi chia một số cho 255 ta được số dư là 100. hỏi số đó chia hết cho 85 không? Vì sao? Nếu có dư thì số như là bao nhiêu?

9) Chứng minh rằng với mọi số tự nhiên n thì n2 + n +1 không chia hết cho 4.

mình chia 2 phần ạ. còn phần 2 mình sẽ viết. mong mn giúp mình ạ ^^ mình cần rất gấp vì mai mình đi học rồi. mn ko giúp mình là coi như mình toang luôn T-T

8
16 tháng 10 2021

mn ơi mình cần siêu gấp luôn T-T

16 tháng 10 2021

mnnnnn ơi T-T

13 tháng 11 2018

a) +, Nếu p = 2

=> p + 1 = 3 ( là số nguyên tố)

  +, Nếu p > 2 ( p là số nguyên tố)

=> p = 2k + 1   ( k thuộc N* )

=> p + 1 = 2k + 1 + 1 = 2k + 2 chia hết cho 2 ( loại )

    Vậy p = 2

b) +, Nếu p = 2 

=> p + 2 = 4       chia hết cho 2, chia hết cho 4 ( loại )

   +, Nếu p = 3

=> p + 2 = 5 ( là số nguyên tố )

     p + 4 = 7  ( là số nguyên tố)

  +, Nếu p > 3  ( p là số nguyên tố )

=> p = 3k + 1  hoặc p = 3k + 2  ( k thuộc N*)

    TH1: p = 3k + 1

=> p + 2 = 3k + 1 + 3 = 3k + 3   chia hết cho 3 ( loại )

    TH2: p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6   chia hết cho 3 ( loại )

     Vậy p = 3

 c,

Tương tự

13 tháng 11 2018

a, Xét P=2 thì P+1=3 => P=2 thỏa mãn

Xét P>2 thì P=2k+1 => P+1=2k+1+1=2k+2 chia hết cho 2 và >2 vì P là SNT > 2=>p=2k+1 ko thỏa mãn

b,Xét P=2 thì P+2=4 => P=2 ko thỏa mãn

Xét P=3 thì P+2=5 và P+4=7 đều là SNT => P=3 thỏa mãn 

Xét P>3 thì P=3k+1 hoặc 3k+2

bạn thay vào như phần a

c, làm tương tự 2 TH trên