K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(48-4y^2-4y\)

\(=-\left(4y^2+4y-48\right)\)

\(=-\left[\left(2y+1\right)^2-49\right]\)

\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)

\(=-\left(2y-6\right)\left(2y+8\right)\)

\(=-4\left(y-3\right)\left(y+4\right)\)

21 tháng 8 2019

48 - 4y2 - 4y <=> 4(12-y2-y)

21 tháng 8 2019

\(48-4y^2-4y\)

\(=52-\left(4y^2+4y+4\right)\)

\(=\sqrt{52}^2-\left(2y+2\right)^2\)

\(=\left(\sqrt{52}-2y-2\right)\left(\sqrt{52}+2y+2\right)\)

\(48-4y^2-4y=-\left(4y^2+4y-48\right)\)

                 \(=-\left[\left(2y\right)^2+2.2y+1-49\right]\)

         \(=-\left[\left(2y+1\right)^2-7^2\right]\)

\(=-\left(2y-6\right)\left(2y+8\right)\)

21 tháng 8 2019

\(48-4y^2-4y\)

\(=-\left(4y^2+4y-48\right)\)

\(=-\left(4y^2+4y+1-49\right)\)

\(=-\left[\left(2y+1\right)^2-7^2\right]\)

\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)

\(=-\left(2y-6\right)\left(2y+8\right)\)

\(=-4\left(y-3\right)\left(y+4\right)\)

3 tháng 7 2016

Đề là gì vậy cậu ???? 

 

 

 

 

3 tháng 7 2016

Làm cái j z bạn

lolang

11 tháng 12 2016

a, \(4y^2+1-4y=\left(2y\right)^2-2.2y.1+1^2=\left(2y-1\right)^2\)

b, \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)

c, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

 

 

11 tháng 12 2017

x2+2y2+2xy-4y+4=0

(x2+2xy+y2)+ (y2-4y+4) = 0

(x+y)2 + (y-2)2 = 0

Với mọi x, y ta luôn có

(x+y)2 >= 0

(y-2)2 >= 0 

do đó (x+y)2 + (y-2)2 >= 0

Dấu = xảy ra khi

x+y=0 và y-2=0

=> x=-2 và y = 2

Thay vào B rồi tính ra B= -4

25 tháng 9 2019

Ta có:

\(x^2+2y^2+2xy-4y+4=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)

\(\left(x+y\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Thay x= -2, y=2 vào biểu thức B, ta đc:

\(B=\left(4+4+48\right)\div\left(-2-2\right)\)

\(B=56\div\left(-4\right)=-8\)

Vậy B= -8 tại x=-2, y=2

22 tháng 8 2018

1. \(x^2-2x+2+4y^2+4y\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

2. \(4x^2-4x+y^2+2y+2\)

\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2\)

3. \(4x^2+4x+4y^2+4y+2\)

\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)

4. \(4x^2+y^2+12x+4y+13\)

\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)

\(=\left(2x+3\right)^2+\left(y+2\right)^2\)

3 tháng 9 2018

\(x^2-2x+2+4y^2+4y\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

\(4x^2-4x+y^2+2y+2\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2\)