Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(48-4y^2-4y\)
\(=52-\left(4y^2+4y+4\right)\)
\(=\sqrt{52}^2-\left(2y+2\right)^2\)
\(=\left(\sqrt{52}-2y-2\right)\left(\sqrt{52}+2y+2\right)\)
\(48-4y^2-4y=-\left(4y^2+4y-48\right)\)
\(=-\left[\left(2y\right)^2+2.2y+1-49\right]\)
\(=-\left[\left(2y+1\right)^2-7^2\right]\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
\(48-4y^2-4y\)
\(=-\left(4y^2+4y-48\right)\)
\(=-\left(4y^2+4y+1-49\right)\)
\(=-\left[\left(2y+1\right)^2-7^2\right]\)
\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
\(=-4\left(y-3\right)\left(y+4\right)\)
a, \(4y^2+1-4y=\left(2y\right)^2-2.2y.1+1^2=\left(2y-1\right)^2\)
b, \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)
c, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
x2+2y2+2xy-4y+4=0
(x2+2xy+y2)+ (y2-4y+4) = 0
(x+y)2 + (y-2)2 = 0
Với mọi x, y ta luôn có
(x+y)2 >= 0
(y-2)2 >= 0
do đó (x+y)2 + (y-2)2 >= 0
Dấu = xảy ra khi
x+y=0 và y-2=0
=> x=-2 và y = 2
Thay vào B rồi tính ra B= -4
Ta có:
\(x^2+2y^2+2xy-4y+4=0\)
\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)
\(\left(x+y\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Thay x= -2, y=2 vào biểu thức B, ta đc:
\(B=\left(4+4+48\right)\div\left(-2-2\right)\)
\(B=56\div\left(-4\right)=-8\)
Vậy B= -8 tại x=-2, y=2
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
\(48-4y^2-4y\)
\(=-\left(4y^2+4y-48\right)\)
\(=-\left[\left(2y+1\right)^2-49\right]\)
\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
\(=-4\left(y-3\right)\left(y+4\right)\)