K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

31 tháng 8 2019

Ta có: A = 4x2 + y2 + 4x - 4y - 3 = (4x2 + 4x + 1) + (y2 - 4y + 4) - 10 = (2x + 1)2 + (y - 2)2 - 10

Ta luôn có: (2x + 1)2 \(\ge\)\(\forall\)x

    (y - 2)2 \(\ge\)\(\forall\)y

=> (2x + 1)2 + (y - 2)2 - 10 \(\ge\) -10 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=2\end{cases}}\)

Vậy MinA = -10 <=> x = -1/2 và y = 2

B = x2 + 4y2 - 4x + 4y + 3 = (x2 - 4x + 4) + (4y2 + 4y + 1) - 2 = (x - 2)2 + (2y + 1)2 - 2

còn lại tương tự

16 tháng 8 2015

 

M= x2 +2y2 +2xy -4y +5

=x2+2xy+y2+y2-4y+4+1

=(x+y)2+(y-2)2+1

Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)

nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

 Dấu "=" xảy ra khi:

y-2=0 và x+y=0

<=>y=2 và x+2=0

<=>y=2 và x=-2

Vậy GTNN của M là 1 tại x=-2;y=2

26 tháng 8 2016

a/ B = 4y2 -12y + 15 = (2y)2 - 2 . 3 . 2y + 32 + 6 = (2y - 3)2 + 6 \(\ge\)6

Đẳng thức xảy ra khi: \(2y-3=0\Rightarrow2y=3\Rightarrow y=1,5\)

Vậy giá trị nhỏ nhất của B là 6 khi x = 1,5

b/ C = x2 - x + 1 = x2 - 2 . 0,5x + (0,5)2 + 0,75 = (x - 0,5)2 + 0,75 \(\ge\)0,75

Đẳng thức xảy ra khi: x - 0,5 = 0  => x = 0,5

Vậy giá trị nhỏ nhất của C là 0,75 khi x = 0,5

1 tháng 7 2015

x^2+4y^2-6x-4y+15

=x2-6x+9+4y2-4y+1+5

=(x-3)2+(y-2)2+5

vì (x-3)2\(\ge\)0;(y-2)2\(\ge\)0 (với mọi x;y)

nên (x-3)2+(y-2)2+5\(\ge\)5

dấu "=" xảy ra khi

x-3=0 và y-2=0

x=3 và y=2

vậy GTNN của x^2+4y^2-6x-4y+15 là 5 tại x=3 và y=2

23 tháng 3 2016

ta co x+4y=2

=>x=2-4y thay vào biểu thức ta có (2-4y)2+4y2=20y2-16y+4=>min=4/5 tại y=2/5

24 tháng 3 2018

A=x2-2x+1+y2-4y+4+2 = (x-1)2+(y-2)2 + 2\(\ge\)2 Với mọi x, y

=> Amin = 2 đạt được khi x=1 và y=2