Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
(x2 - 1)(x2 - 5)(x2 - 11) < 0
=> tích có lẻ thừa số nguyên âm
+ Nếu tích có 1 thừa số nguyên âm
Mà x2 - 1 > x2 - 5 > x2 - 11 => x2- 11 là số nguyên âm
=> -4 < x2 < 11
=> x2 thuộc {0; 1; 4; 9} (Vì x2 là số chính phương)
=> x thuộc {0; 1; 2; 3}
+ Nếu tích có 3 thừa số nguyên âm
Xét tương tự
Ta có -2-(x-17)=34-(-x+25)
-2-x+17=34+x+25
-2 +(-x)+17+(-x)=34+25
[(-x)+(-x)]+[(-2)+17]=29
(-x).2+15=29
(-x).2=29-15
(-x).2=14
(-x)=14:2
(-x)=7
x=-7
2x + 2 + 2x - 1 + 2x - 2 = 152
19 . 2x - 2 = 152
19 . 2x - 2/19 = 152/19
2x - 2 = 8
2x - 2 = 23
x - 2 = 3
x = 3 + 2
x = 5
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9
Vậy A ko phải là số chính phương.
3^x+1 - 7 = 2
3^x+1 = 2+7
3^x+1 = 9
3^x+1 = 3^2
=> x+1=2
x= 2-1
x=1
vậy.....
\(3^{x+1}-7=2\)
\(\Leftrightarrow3^{x+1}=2+7\)
\(\Leftrightarrow3^{x+1}=9\)
\(\Leftrightarrow3^{x+1}=3^2\)
\(\Leftrightarrow x+1=2\)
\(\Leftrightarrow x=2-1\)
\(\Leftrightarrow x=1\)