Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x:
1. \(25x^2-20x+4=0\)
⇔ \(\left(5x-2\right)^2=0\)
⇔ \(5x-2=0\)
⇔ \(5x=2\)
⇔ \(x=\dfrac{2}{5}\)
⇒ S = \(\left\{\dfrac{2}{5}\right\}\)
2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)
⇔ \(4x^2-12x+9-\left(4x^2-1\right)=0\)
⇔ \(4x^2-12x+9-4x^2+1=0\)
⇔ \(-12x+10=0\)
⇔ \(-12x=-10\)
⇔ \(x=\dfrac{5}{6}\)
⇒ S \(=\left\{\dfrac{5}{6}\right\}\)
3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)
⇔ \(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)
⇔ \(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)
⇔ \(-2+x=0\)
⇔ \(x=2\)
⇒ S \(=\left\{2\right\}\)
4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)
⇔ \(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)
⇔ \(8x^2+8x+34=8x^2+16x+8\)
⇔ \(8x+34=16x+8\)
⇔ \(8x-16x=8-34\)
⇔ \(-8x=-26\)
⇔ \(x=\dfrac{13}{4}\)
⇒ S \(=\left\{\dfrac{13}{4}\right\}\)
5.\(4x^2+12x-7=0\)
⇔ \(4x^2+14x-2x-7=0\)
⇔ \(2x\left(2x+7\right)-\left(2x+7\right)=0\)
⇔ \(\left(2x+7\right)\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)
6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)
⇔ \(9x^2+24x-20=0\)
⇔ \(9x^2+30x-6x-20=0\)
⇔ \(3x\left(3x+10\right)-2\left(3x+10\right)=0\)
⇔ \(\left(3x+10\right)\left(3x-2\right)=0\)
⇔ \(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)
7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(896-9x^2-12x=0\)
⇔ \(-896+9x^2+12x=0\)
⇔ \(9x^2+12x-896=0\)
⇔ \(9x^2-84x+96x-896=0\)
⇔ \(3x\left(3x-28\right)+32\left(3x-28\right)=0\)
⇔ \(\left(3x-28\right)\left(3x+32\right)=0\)
⇔ \(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)
#)Giải :
Câu 1 :
5x(1 - 2x ) - 3x ( x+18) = 0
<=> 5x - 10x^2 - 3x^2 - 54x = 0
<=> -13x^2 - 49x = 0
<=> x= 0 hoặc x = - 49/13
Vậy x có hai giá trị là 0 và - 49/13
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
a/ \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
<=> \(48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
<=> \(83x-2=81\)
<=> \(83x=83\)
<=> \(x=1\)
b/ \(\left(2x-3\right)\left(2x+3\right)-\left(4x+1\right)x=1\)
<=> \(4x^2-9-4x^2-x=1\)
<=> \(-\left(9+x\right)=1\)
<=> \(9+x=-1\)
<=> \(x=-10\)
c/ \(3x^2-\left(x+2\right)\left(3x-1\right)=-7\)
<=> \(3x^2-\left(3x^2-x+6x-2\right)=-7\)
<=> \(3x^2-3x^2+x-6x+2=-7\)
<=> \(-5x+2=-7\)
<=> \(-5x=-9\)
<=> \(x=\frac{9}{5}\)
1: \(=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)=-\left(x+1\right)^2-1< =-1\)
Dấu '=' xảy ra khi x=-1
2: \(=-\left(4x^2-12x-10\right)\)
\(=-\left(4x^2-12x+9-19\right)\)
\(=-\left(2x-3\right)^2+19< =19\)
Dấu '=' xảy ra khi x=3/2
3: \(=-\left(x^2+4x+4-4\right)=-\left(x+2\right)^2+4< =4\)
Dấu '=' xảy ra khi x=-2
1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)
2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)
5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)
7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)
\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)
\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
=> \(2x^2+3\left(x^2-1\right)=5x^2+5x\)
=> \(2x^2+3x^2-3-5x^2-5x=0\)
=> \(-3-5x=0\)
=> \(5x=-3\Rightarrow x=-\frac{3}{5}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+\frac{9}{2}\right)=\frac{7}{2}\)
=> \(x\left[2x\left(x+5\right)-1\left(x+5\right)\right]-2x^2\left(x+\frac{9}{2}\right)-1\left(x+\frac{9}{2}\right)=\frac{7}{2}\)
=> \(x\left(2x^2+10x-x-5\right)-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)
=> \(2x^3+10x^2-x^2-5x-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)
=> \(\left(2x^3-2x^3\right)+\left(10x^2-x^2-9x^2\right)+\left(-5x-x\right)-\frac{9}{2}=\frac{7}{2}\)
=> \(-6x-\frac{9}{2}=\frac{7}{2}\)
=> \(-6x=8\Rightarrow x=-\frac{8}{6}=-\frac{4}{3}\)
\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
=> 12x(4x - 1) - 5(4x - 1) + 3x(1 - 16x) - 7(1 - 16x) = 81
=> 48x2 - 12x - 20x + 5 + 3x - 48x2 - 7 + 112x = 81
=> -12x - 20x + 3x + 112x + 5 - 7 = 81
=> 83x + 5 - 7 = 81
=> 83x = 81 + 7 - 5
=> 83x = 83
=> x = 1
1) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Leftrightarrow2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow5x=-3\)
\(\Rightarrow x=-\frac{3}{5}\)
2) \(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+\frac{9}{2}\right)=\frac{7}{2}\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)
\(\Leftrightarrow-6x=8\)
\(\Rightarrow x=-\frac{4}{3}\)
3) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-32x+5-48x^2+115x-7=81\)
\(\Leftrightarrow83x=83\)
\(\Rightarrow x=1\)