Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
,(3x-1) mũ 2=9/16
<=> (3x-1)^2 = ( ±3/4)^2
<=> l3x-1l = 3/4
Hoặc 3x-1 = 3/4
<=> 3x= 3/4 + 1
<=> x = 7/4 : 3
<=> x= 7/1
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
1.(x -5)^2 - 25 =0
=> (x - 5)^2 = 25
=> x - 5 = 5 hoặc x - 5 = -5
=> x = 10 hoặc x = 0
vậy_
2. (x -2)^3 =27
=> x - 2 = 3
=> x = 5
vậy_
3. 3(x -7) + 2x(x+2) = 2x^2
=> 3x - 21 + 2x^2 + 4x = 2x^2
=> 7x - 21 = 0
=> 7x = 21
=> x = 3
vậy_
4. (x^2 - 4) (x +8) =0
=> x^2 - 4 = 0 hoặc x + 8 = 0
=> x^2 = 4 hoặc x = -8
=> x = 2 hoặc x = -2 hoặc x = -8
vậy_
5. x^ 2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
6. 3x^3 - 3x = 0
=> 3x(x^2 - 1) = 0
=> 3x(x - 1)(x + 1) = 0
=> x = 0 hoặc x = 1 hoặc x = -1
vậy_
7. (x +1)^2 = ( 2x +3)^2
=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0
=> (3x + 3)(-x - 2) = 0
=> x = -1 hoặc x = -2
vậy_
Bài làm
1) ( x - 5 )2 - 25 = 0
<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0
<=> x( x - 10 ) =
<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy S = { 0; 10 }
2) \(\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm phương trình.
3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)
\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=\frac{21}{7}=3\)
Vậy x = 3 là nghiệm phương trình
4) \(\left(x^2-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)
Vậy S = { 2; -2; -8 }
5) \(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy S = { 0; -3 }
6) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy S = { +1; 0 }
7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)
Vậy S = { -2; -4/3 }
# Học tốt #
a) \(x^2-\frac{1}{49}=0\)
<=> \(\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
<=> \(\orbr{\begin{cases}x-\frac{1}{7}=0\\x+\frac{1}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{7}\\x=-\frac{1}{7}\end{cases}}\)
Vậy x = \(\pm\frac{1}{7}\)
b) \(64-\frac{1}{4}x^2=0\)
<=> \(\left(8-\frac{1}{2}x\right)\left(8+\frac{1}{2}x\right)=0\)
<=> \(\orbr{\begin{cases}8-\frac{1}{2}x=0\\8+\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=16\\x=-16\end{cases}}\)
Vậy \(x=\pm16\)
c) 9x2 + 12x + 4 = 0
<=> (3x + 2)2 = 0
<=> 3x + 2 = 0
<=> x = -2/3
Vậy x = -2/3
e) \(x^2+\frac{1}{4}=x\)
<=> \(x^2-x+\frac{1}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
d, sửa đề : \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
i, \(4-\frac{12}{x}+\frac{9}{x^2}=0\)ĐK : \(x\ne0\)
Vì \(x\ne0\)Nhân 2 vế với \(x^2\)phương trình có dạng
\(4x^2-12x+9=0\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự