K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

`2019x^2+2020y^2-4038x+4040y+4039=0`

`<=>2019(x^2-2x+1)+2020(y^2+2y+1)=0`

`<=>2019(x-1)^2+2020(y+1)^2=0`

`<=>x=1,y=-1`

1 tháng 11 2021

\(x^3+2019x^2+2019x+2018=x^2\left(x+2018\right)+x\left(x+2018\right)+\left(x+2018\right)=\left(x+2018\right)\left(x^2+x+1\right)\)

NV
29 tháng 6 2020

Đặt \(\left\{{}\begin{matrix}2020=c\\2019=d\end{matrix}\right.\)

\(\Rightarrow P=\frac{c}{a+b}+\frac{a}{b+d}+\frac{b}{c+d}+\frac{d}{a+c}=\frac{c^2}{ac+bc}+\frac{a^2}{ab+ad}+\frac{b^2}{bc+bd}+\frac{d^2}{ad+cd}\)

\(P\ge\frac{\left(a+b+c+d\right)^2}{ac+ab+bd+cd+2ad+2bc}=\frac{\left(a+d+b+c\right)^2}{\left(a+d\right)\left(b+c\right)+2ad+2bc}\)

\(P\ge\frac{\left(a+d\right)^2+\left(b+c\right)^2+2\left(a+d\right)\left(b+c\right)}{\left(a+d\right)\left(b+c\right)+2ad+2bc}\ge\frac{4ad+4bc+2\left(a+d\right)\left(b+c\right)}{\left(a+d\right)\left(b+c\right)+2ad+2bc}=2\)

\(P_{min}=2\) khi \(\left\{{}\begin{matrix}a=d\\b=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2019\\b=2020\end{matrix}\right.\)

13 tháng 3 2020

\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)

Câu \(b\) thấy hơi kì nên chắc đề như này.

\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)

\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)

\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

13 tháng 3 2020

\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)

1)x^2-2x-1=0

<=> (x^2-2x+1)-2=0

<=>(x-1)2 =2

=>x-1 = \(\pm\sqrt{2}\)

=> x= \(\pm\sqrt{2}\) +1

2) x^2-x-1=0

<=> (x^2-x+1/4) -5/4=0

<=>(x+1/2)2= 5/4

=> x+1/2 = \(\pm\sqrt{\dfrac{5}{4}}\)

=>x=\(\pm\sqrt{\dfrac{5}{4}}\) - 1/2

3)x^2+x-3=0

<=> (x^2 + x + 1/4) -13/4=0

<=>(x+1/2)2 = 13/4

=> x+1/2 = \(\sqrt{\dfrac{13}{4}}\)

=> x= \(\sqrt{\dfrac{13}{4}}\) -1/2

4) 4x^2-4x-1=0

<=> (4x^2-4x+1)-2=0

<=>(2x-1)2 -2=0

<=> (2x-1)2 - \(\left(\sqrt{2}\right)^2\) =0

<=> (2x-1 - \(\sqrt{2}\) ) . (2x-1 +\(\sqrt{2}\) )=0

=> 2x-1-\(\sqrt{2}\) =0 hoặc 2x-1+\(\sqrt{2}\) =0

=> 2x= 1+\(\sqrt{2}\) hoặc 2x= 1 - \(\sqrt{2}\)

=> x=\(\dfrac{1+\sqrt{2}}{2}\) hoặc x=\(\dfrac{1-\sqrt{2}}{2}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 7 2023

a) Điểm M sẽ thuộc góc phần tư thứ I 

b) Điểm M sẽ thuộc góc phần tư thứ IV

c) Điểm M sẽ thuộc góc phần tư thứ II

d) Điểm M sẽ thuộc góc phần tư thứ III

3 tháng 10 2023

1, \(x^2\) - 9 = 0

 (\(x\) - 3)(\(x\) + 3) = 0

 \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

 vậy \(x\) \(\in\) {-3; 3}

 

  

 

3 tháng 10 2023

5, 4\(x^2\) - 36 = 0

    4.(\(x^2\) - 9) = 0

       \(x^2\) - 9 = 0

       (\(x\) - 3)(\(x\) + 3) = 0

        \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-3; 3}