Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{1}{b}}+2\sqrt{c.\frac{1}{c}}\)
\(=2+2+2=6\)
\(\Rightarrow a+b+c\ge3\)
\(P=a+b^{2019}+c^{2020}\)
\(=a+\left(b^{2019}+1.2018\right)+\left(c^{2020}+1.2019\right)-4037\)
\(\ge a+2019.\sqrt[2019]{b^{2019}.1^{2018}}+2020.\sqrt[2020]{c^{2020}.1^{2019}}-4037\)(BDT Cauchy-Schwarz)
\(=a+2019b+2020c-4037\)
Do \(a\le b\le c\)nên
\(\Rightarrow P\ge a+2019b+2020c\)
\(\ge a+\left(\frac{2017}{3}+\frac{4040}{3}\right)b+\left(\frac{2020}{3}+\frac{4040}{3}\right)c-4037\)
\(\ge a+\frac{2017}{3}a+\frac{4040}{3}b+\frac{2020}{3}a+\frac{4040}{3}c-4037\)
\(=\frac{4040}{3}.\left(a+b+c\right)-4037\)
\(\ge4040-4037=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Méo bt trẩu là gì à =))
Bảo ezzz thì chỉ hộ cách làm ko bt thì đừng cư xử như 1 đứa trẻ trâu=))
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
Áp dụng:
\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)
\(=a+b+c=2019\)
Dấu "=" xảy ra tại a=b=c=673
Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)
Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)
Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)
Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)
Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)
\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)
\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)
Đẳng thức xảy ra khi a = b = 1
Đặt \(\left\{{}\begin{matrix}2020=c\\2019=d\end{matrix}\right.\)
\(\Rightarrow P=\frac{c}{a+b}+\frac{a}{b+d}+\frac{b}{c+d}+\frac{d}{a+c}=\frac{c^2}{ac+bc}+\frac{a^2}{ab+ad}+\frac{b^2}{bc+bd}+\frac{d^2}{ad+cd}\)
\(P\ge\frac{\left(a+b+c+d\right)^2}{ac+ab+bd+cd+2ad+2bc}=\frac{\left(a+d+b+c\right)^2}{\left(a+d\right)\left(b+c\right)+2ad+2bc}\)
\(P\ge\frac{\left(a+d\right)^2+\left(b+c\right)^2+2\left(a+d\right)\left(b+c\right)}{\left(a+d\right)\left(b+c\right)+2ad+2bc}\ge\frac{4ad+4bc+2\left(a+d\right)\left(b+c\right)}{\left(a+d\right)\left(b+c\right)+2ad+2bc}=2\)
\(P_{min}=2\) khi \(\left\{{}\begin{matrix}a=d\\b=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2019\\b=2020\end{matrix}\right.\)